Public Roads

A JOURNAL OF HIGHWAY

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION BUREAU OF PUBLIC ROADS

Public Roads
 A JOURNAL OF HIGHWAY RESEARCH

Published Bimonthly
Harry C. Secrest, Managing Editor - Fran Faulkner, Editor

October 1969/Vol. 35, No. 10
U.S. DEPARTMENT OF TRANSPORTATION JOHN A. VOLPE, Secretary
FEDERAL HIGHWAY ADMINISTRATION F. C. TURNER, Administrator BUREAU OF PUBLIC ROADS R. R. BARTELSMEYER, Director

CONTENTS

Articles

Fatal Accidents on Completed Sections of the Interstate Highway System, 1968, by Harold R. Hosea_ 217

Billboards and Motorists' Needs,
by Floyd I. Thiel 225

Quality Assurance in Highway Construction
Part 5-Summary of Research for Quality As. surance of Aggregate, by James A. Kelley_

Publications

Research and Development Reports Available from the Clearinghouse for Federal Scientific and Technical Information_

Publications of the Bureau of Public Roads Available from the Superintendent of Documents Inside back cover

Status Report

National System of Interstate and Defense High-ways-Status of System Mileage, June 1969_..-

COVER

Four level interchange near Dayton, Ohio, where highways I-75 and U.S. 35 intersect. The use of four levels reduced the size of the construction area in the costly industrial vicinity.

THE BUREAU OF PUBLIC ROADS FEDERAL HIGHWAY ADMINISTRATION
U.S. DEPARTMENT OF TRANSPORTATION

Washington, D.C. 20591
FHWA REGIONAL OFFICES
No. 1. 4 Normanskill Blvd., Delmar, N.Y. 12054. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont, and Puerto. Rico.
No. 2. 1633 Federal Building, 31 Hopkins Place, Baltimore, Md. 21201.
Delaware, District of Columbia, Maryland, Ohio, Pennsy/vania, Virginia, and West Virginia.
No. 3. 1720 Peachtree Rd., N.W., Atlanta, Ga. 30309.

Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee.
No. 4. 18209 Dixie Highway, Homewood, III. 60430.

Illinois, Indiana, Kentucky, Michigan, and Wisconsin.
No. 5. Civic Center Station, Kansas City, Mo. 64106.
lowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota.
No. 6. 819 Taylor St., Fort Worth, Tex. 76102.
Arkansas, Louisiana, Oklahoma and Texas.
No. 7. 450 Golden Gate Ave., Box 36096, San Francisco, Calif. 94102.
Arizona, California, Hawaii, and Nevada.
No. 8. 412 Mohawk Bldg., 222 SW. Morrison St., Portland, Oreg. 97204.
Alaska, Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denver, Colo. 80225.
Colorado, New Mexico, Utah, and Wyoming.
No. 15. 1000 N. Glebe Rd., Arlington, Va. 22201.

Eastern Federal Highway Projects
No. 19. Apartado Q, San Jose, Costa Rica.
Inter-American Highway: Costa Rica, Guatemala, Nicaragua, and Panama.

Public Roads, A Journal of Highway Research, is sold by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, at $\$ 2.00$ per year (50 cents additional for foreign mailing) or 40 cents. per single copy. Subscriptions are available for 1-, 2-, or 3 -year periods. Free distribution is limited to public officials actually engaged in planning or constructing highways and to instructors of highway engineering. There are no vacancies in the free list at present.
Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget, March 16, 1966.

The most prevalent type of accident on the Interstate Highway System is the single-vehicle accident, in which the vehicle strikes a fixed roadside object or overturns.

Fatal Accidents on Completed Sections of the Interstate Highway System, 1968

BY THE OFFICE OF
TRAFFIC OPERATIONS
BUREAU OF PUBLIC ROADS

Reported by HAROLD R. HOSEA,
Accident Records Analyst,
Programs Division

Introduction

REPORTS of 2,754 fatal accidents that occurred in 1968 on sections of the Intertate Highway System complying fully to nterstate design standards have been anayzed from police investigation reports obained from the States. These accidents, rhich constitute slightly less than 90 percent f the total allocated to the Interstate System nder statistical reporting procedures develped by the Current Planning Division, hureau of Public Roads, are discussed here. ccidents that occurred on certain frontage, arvice, and connector roads were omitted, as ere a few for which reports were received too the to include in the discussion. Statistical ata, compiled in accordance with the Planing Division's procedures, are summarized in
an annual publication of the Bureau of Public Roads (1) ${ }^{1}$.

The fatal accidents that occurred on the Interstate System in 1967 were also analyzed, but no formal report was issued for general distribution. Certain data for the two years, 1967 and 1968, were compared, and important differences in accident patterns are reported here, although not all the data are readily comparable because of recent refinements in statistical treatment.

Number and Characteristics of the Accidents

Types of accidents

The 2,754 accidents were divided into two broad categories for analysis: those involving

[^0]a single vehicle, and those involving two or more vehicles. As indicated in table 1, the single-vehicle accidents accounted for twothirds of the total. This ratio is virtually identical with that for the 1967 accidents, but there were minor differences in the proportions of specific types of accidents. The most significant difference was in the number of head-on collisions, which amounted to a smaller percentage of the total in 1968 than in 1967. This was true of both principal types of head-on collisions - those caused by wrongway drivers and those caused by out-ofcontrol vehicles that crossed medians.

Pedestrian accidents accounted for more than 7 percent of the accidents in both years, a proportion that seems high, as pedestrians are excluded by law or regulation from the Interstate System. In the 1967 study, it was

Table 1.-Fatal accidents on completed sections of the Interstate System, 1968-accident types, fatalities, injuries, and property damaje

${ }^{1}$ Primarily, vehicles that struck other objects or non-motor vehicles on the road, and accidents in which occupants fell from vehicles.
assumed that relatively few of the pedestrians were trespassers as distinguished from persons who had left their vehicles for one reason or another. To test this assumption, the two groups were coded separately in the study reported here. Of the 219 pedestrian fatalities, 154 , or 70 percent, were actually trespassers. (See table 1.)

Collisions with properly parked vehicles are classified as single-vehicle accidents. Collisions with vehicles standing on the traveled way are classified as other types of accidents, depending on the position of the vehicle struck. In both years, accidents in which vehicles ran off the road and did not collide with another vehicle were the most frequent. This type of accident is discussed later in detail.

Fatalities and injuries

The 2,754 accidents resulted in 3,326 fatalities or 1.21 deaths per accident. Singlevehicle accidents resulted in an average of 1.14 fatalities per accident, which corresponded to 1.35 fatalities per accident in multiple-vehicle accidents. These rates did not differ significantly from those for 1967. Head-on collisions caused by wrong-way drivers produced the highest fatality rate, 1.76 per accident.

There were 1.14 nonfatal injuries per fatal accident reported in 1968, a somewhat lower average than that for 1967. Total injuries in all fatal accidents were 3,067 .

Accident costs

To estimate the economic loss in fatal accidents, the following figures suggested by the National Safety Council (2) have been used for fatalities and injuries. It is recognized that there are numerous other figures widely used for this purpose and any different values can be substituted by simple multiplications.

Table 2.-Fatal accidents on completed sections of the Interstate System, 1968-accidut types and light conditions

Type of accident	Total	Light condition									
		Daylight	Darkness			Dawn or dusk	$\begin{aligned} & \text { Not } \\ & \text { reported } \end{aligned}$				
			Total	Unlighted	Lighted						
Total accidents, all types:											
Percent.-.	2,754 100	1,173 43	1,453 53	1,177 43	276 10	113	${ }_{(1)}^{15}$				
Single vehicle:											
Number	1,842	777	982	792	190	74	9				
Percent.-	100	43	53	43	10	4	(1)				
Ran off road: Number	1,462	646	746	593	153	67	3				
Percent	100	44	51	41	10	5	(1)				
Pedestrian: Number	214	58									
Pumber-	9100	396 44	471 52	385 43	86 9	39 4	${ }^{6}$				
Rear-end coilisions: ${ }^{\text {R }}$ - ${ }^{\text {a }}$											
Number	411	139	249	205	44	20	${ }^{3}$				
Number....	309	153	138	115	23	15	3				
Percent $\ldots . ~$ 100 50 45 38 7 5 (1)											
Wrong-way driver: Number											
Vehicles from opposing											
lanes:	164	110	42	35)				
Percent...........	100	68	26	22	4	6	(1)				

${ }^{1}$ Accidents not reported are excluded from percentage distributions.
Table 3.-Fatal accidents on completed sections of the Interstate System, 1968-vehie types and total travel ${ }^{1}$

Type of vehicle	Vehicle miles 2		Accidents		Fatalities		Injuries	
	Number	Percent	Number	Percent	Number	Percent	Number	Percen
Total, all types..-	Million 111, 368	100.0	2, 754	100.0	3, 326	100. 0	3, 067	100.0
Property-carrying vehicles: Combinations	11,399	10.2	253	9.2	291	8.7	205	6.7
All single-unit trucks: Panels and pickups.	7,563	6.8	181	6.6				
Other single units Total single-unit	3, 622	3.3	77	2.8				
trucks	11, 185	10.1	258	9.4	290	8.7	213	6.9
carrying vehicles..	22, 584	20.3	511	18.6	581	17.4	418	13.6

[^1]

Figure 1.-Fatal accidents on the Interstate System, 1968-day of occurrence.

Estimated economic loss in fatal accidents:

Loss

3,326 fatalities at $\$ 38,500 \ldots \ldots \$ 128,051,000$ 3,067 nonfatal injuries at $\$ 1,377$ (weighted on the basis of the three degrees of severity of injury in general use) -------------
Property damage (see text
below)
4, 223, 259
7, 783, 900
Total
140, 058, 159
Per accident \qquad 50, 856

The estimate for property damage includes both the cost of vehicle damage and the cost of replacing highway appurtenances such as guardrails, signs, light poles, etc. Typically, police investigation reports contained cost estimates of repairing the damaged vehicles, but when the estimates exceeded current retail values of the vehicles (3), the amounts were reduced to the latter figures. Also, the values of commercial-vehicle cargoes damaged in accidents were often inadequate for precise estimates of property damage.

Day and Time of Occurrence

The distribution of fatal accidents by day of the week is shown in figure 1. The maximum frequency occurred on Saturday when 20.7 percent of the accidents were recorded. The low point was on Wednesday when 11.1 percent of the accidents occurred. Over half, 53.1 percent, of the accidents occurred on weekends, Friday through Sunday.

The highest percentage of single-vehicle accidents for any interval occurred between 2 and 3 a.m. (fig. 2). The peak for multiplevehicle accidents was 3 hours earlier, beginning at 11 p.m. Of the total accidents, 6.4 percent occurred in the $2 \mathrm{a} . \mathrm{m}$. hour. The proportion for single-vehicle, off-the-road accidents was slightly higher- 7.0 percent. The smallest percentages occurred in the 9 a.m. and 11 a.m. hours for multiple- and singlevehicle accidents, respectively.

Accident Environment

Light conditions

More than half the accidents, 53 percent, occurred at night and only a fifth of these
were on lighted sections of highway. (See table 2.) This might be expected because lighting on the Interstate System is largely limited to urban sections and interchanges. A higher percentage, 72 percent, of the pedestrian accidents occurred at night, and although precise information was not available, numerous investigation reports cited dark clothing and intoxication as factors in these accidents. Also, collisions caused by wrong-way drivers occurred more frequently during hours of darkness, although the opposite was true in collisions caused by vehicles that crossed medians.

Weather and pavement conditions

Four-fifths of the accidents occurred during clear or cloudy weather, 15 percent in rainy weather, 3 percent during snow, and 2 percent in fog. There were no significant deviations from this pattern for the different types of accidents except rear-end collisions, 5 percent of which occurred in fog. Investigation reports noted a few accidents in which strong wind was a factor in off-the-road accidents, principally those involving small foreign cars.

As might be expected, the pattern of accidents related to pavement conditions was essentially similar to that related to weather conditions. About a fifth of the accidents occurred on wet pavements, and 4 percent on ice or snow. The outstanding exception was that more than half, 52.2 percent, of the head-on collisions that resulted from out-ofcontrol vehicles crossing medians happened on wet or icy pavements. Somewhat unexpected was the fact that fewer than a fourth of the single-vehicle, off-the-road accidents occurred on slippery roads.

Highway alinement

More than three-fourths, 78 percent, of the fatal accidents took place on straight sections of highway, and the remainder were nearly equally divided between right and left curves. Single-vehicle, off-the-road accidents occurred more frequently on curved sections, 29 percent of the total, and again they were nearly equally divided between right and left curves. A third of the accidents were on grades-two-thirds on straight sections, and the remainder on curves. In the several individual types of accidents there were no major deviations from these patterns except in rear-end and head-on collisions, nine-tenths of which were on straight sections.

Vehicles

Vehicle types

To assess the importance of different types of vehicles in these accidents, it was necessary to assign the primary responsibility for each accident to an individual vehicle. ${ }^{3}$ Although an element of judgment was involved, significant errors appeared minimal. In two-thirds of the accidents, only one moving vehicle was involved (see table 1). Eleven percent of the accidents were head-on collisions resulting

[^2]

Figure 2.-Fatal accidents on the Interstate System, 1968-hour of occurrence.
from wrong-way drivers or out-of-control vehicles from opposing lanes-accidents in which there is little or no question of responsibility. Rear-end collisions are usually, but not always, the responsibility of the striking vehicle. In these accidents, as well as in broadside collisions and sideswipes, responsibility was assessed on the basis of the details of investigation reports, including the narratives, diagrams, notations of violations, and related data.

The volume of travel and the number of accidents, fatalities, and injuries for each of the principal types of vehicles primarily responsible for the accidents are shown in table 3. Accident responsibility was determined from the investigation reports, as outlined in the preceding paragraph. Passenger vehicles are shown as a single group because the estimates of vehicle-miles of travel were not available for individual types. The percentages of travel, accidents, and injuries for the several
types of vehicles agree closely. In gener the proportions of accidents for propert carrying vehicles are slightly less than te corresponding percentages for vehicle mis of travel. The differences for fatalities and in:ries are slightly larger, probably a result of te lower average human occupany of car vehicles.

Elaboration of this aspect of the accidet pattern is given in tables 4 and 5 . The relatie importance of each vehicle type in each pr-

Table 4.-Fatal accidents on completed sections of the Interstate System, 1968-types of vehicles involved in each type of accident

[^3][^4]Table 5.-Fatal accidents on completed sections of the Interstate System, 1968-types of accidents in which each vehicle type was involved ${ }^{1}$

Type of accident	Passenger vehicles ${ }^{3}$						Property-carrying vehicles ${ }^{2}$			
	Total	Sedans	Convertibles	Station wagons	Motorcycles	Other ${ }^{3}$	Total	Combinations	Panels and pickups	Single- unit trucks
	2,243	1,839	155	194	31	24	511	253	181	77
Ran off road.	56.3	54.9	75.5	59.3	35.5	41.7	38.9	37.5	46, 4	
Overturn on road	1.1	0.9		1.5	19.4		1.2	(4)	0.6	25.9 5.2
Collision-parked vehicle	3.1	3. 1	3.9	2.1	3.2	4.2	5.3	7.5	1.6	6.5
Other .-...------------	7. 4 1.2	8.1 1.0	3. 1.3	5.1 2.1	3.2	8. 2	9.4	7.9	7.8	18.2
Total single vehicle	69.1	68.0	83.9	70.1	61.3	4. 58	2.5 57.3	1.6 54.9	2. 58 58.6	$\begin{array}{r} 6.5 \\ 62.3 \end{array}$
Multiple vehicle: Rear-end collision.										
Rear-end collision-	12.6	12.5	8.4	13.4	25.8	20.8	25.2	31.6	17.2	23.4
Wrong-way driver -	5. 0	5.7	1.9	2.6		4.2	3.5		9.4	
Vehicle from opposite lane	6.5	6.8	3.9	6.7	-........	4.2	3.7	3.2	4.4	3.9
O ther Total head-on collision	${ }^{(4)}$	${ }^{(4)}$		0.5	---7.-.		0.7	(4)	1.6	
Broadside collision.---.--..-.--	11.9	12.9	5.8	9.8		8. 3	8.0	3.6	15.4	5. 2
Broadside colision.--------	2.5 3.9	2.5 4.1	1. 6	3. 1 3.6	3.2 9.7	12.5	1. 6	1.6	1.6	1.3
Total multiple vehicle.	30.9	32.0	16.1	29.9	38.7	-41.7	8.0 42.7	8. 45.1	7.2 41.4	7.8 37.7

1 This table is the converse of table 4.
${ }^{2}$ Includes the one vehicle primarily responsible for each accident, as indicated by police
${ }^{3}$ Includes eight small (less than 10 passenger) buses, seven large buses, one school bus, and eight campers.
${ }^{4}$ Less than 0.5 percent

Table 6.-Age and sex of drivers in fatal accidents on completed sections of the Interstate System, $1968{ }^{1}$

${ }^{1}$ Data in this table refer to the one driver primarily responsible for each accident, as indicated $\quad{ }^{2}$ Excludes 28 drivers whose ages were not reported.
py police investigation reports.
tipal type of accident is shown in table $4 .^{3}$ Of the vehicles involved in off-the-road accidents, 36.4 percent were passenger cars. The coresponding percentage for tractor-trailer compinations was only 6.5. Wrong-way drivers of lassenger vehicles caused 86.3 percent of the lead-on collisions of this type, whereas vrong-way drivers of panels and pickups aused only 13.0 percent. Cargo vehicles, lowever, were involved more frequently in ead-end collisions.
The distribution of accident types in which ach vehicle category was involved is shown a table 5, which is the inverse of the relation hown in table 4 . In single-vehicle accidents, 9.1 percent of the passenger vehicles and 7.3 percent of the property-carrying vehicles rere involved. Compared to 31.6 percent of he tractor-trailer combinations, only 12.6 ercent of the passenger cars were involved in ear-end collisions.
${ }^{3}$ Vehicles deemed primarily responsible for each of the xidents.

Table 7.-Fatal accidents on completed sections of the Interstate System, 1968-condition of drivers, as reported by investigators ${ }^{1}$

Driver condition	Total accidents	Single-vehicle accidents			Multiple-vehicle accidents	
		Total	$\begin{gathered} \text { Ran off } \\ \text { road } \end{gathered}$	Collision with parked vehicle	Total	Rear end
Total drivers, all conditions:						
Number Percent	2,754 100	1,842 100	1,462 100	96 100	$\begin{aligned} & 912 \\ & 100 \end{aligned}$	$\begin{aligned} & 411 \\ & 100 \end{aligned}$
Condition not reported:						
Number Percent	684 25	445 24	391 27	21 22	239 26	97 24
Condition reported:						
Number-...	2, 070	1,397	1,071	75	673	314
Percent:-	100	100	100	100	100	
Number	1,504	933	648	44	571	249
Percent_..........	73	67	61	59	85	79
Total defects reported: Number	566	464	423	31		
Percent.-	100	100	100	100	100	100
Asleep: Number	433	368	342	20	65	46
Percent.	77	79	81	65	64	71
Fatigued: Number						
Percent	9	${ }_{7}$	${ }_{6} 6$	19	19	21
Ill: Number		35	32	3	11	
Percent...	8	8	7	10	11	6
Other: Number lemer	35	29	24	2	6	1
Percent.-	6	6	6	6	6	2

${ }^{1}$ Data in this table refer to the one driver responsible for each accident, as indicated by police investigation reports.

Table 8.-Fatal accidents on completed sections of the Interstate System, 1968-sobriety of drivers, as reported by investigators ${ }^{1}$

Driver sobriety	All accidents	Single-vehicle accidents			Multiple-vehicle accidents			
		Total	$\begin{aligned} & \text { Ran } \\ & \text { off } \\ & \text { road } \end{aligned}$	Collision with parked vehicle	Total	Head-on collisions		Rearend collisions
						Total	$\begin{aligned} & \text { Wrong- } \\ & \text { way } \\ & \text { drivers } \end{aligned}$	
Total drivers, all conditions:								
Number_--.-.-.-.-.-.-.	2,754 100	1,842 100	1,462 100	96 100	912 100	309 100	131 100	411 100
Sobriety not reported: Number	723	493	445	24	224	85	38	88
Percent.	26	27	30	25	25	28	29	21
Sobriety reported: Number	2,031	1,349	1,017	72	688	224	93	323
Percent	100	100	1, 100	100	100	100	100	100
Not drinking:	1,382	931	660	49	451	121	24	230
Percent.	1,68	69	65	68	66	54	26	71
Had been drinking: Number	649	418	357	23	237	103	69	93
Percent.	32	31	35	32	34	46	74	29
Intoxicated:								
Number	187 9	101	88	11	13	19	33	28 9
Impaired:								
	70 4	41 3	34 3	3 4	29 4	9 4	6	10 3
Percent Not impaired:	4	3	3	4	4	4	7	3
Not impaired: Number-	29	27	21	1	2	1	1	1
Percent.-	1	2	2	2	${ }^{(2)}$	${ }^{2}$)	1	${ }^{2}$)
Extent of impairment not								
reported: Number	363	249	218	11	120	51	31	54
Percent	18	19	22	15	17	23	33	17

1 Data in this table refer to the one driver responsible for each accident, as indicated by police investigation reports. Less than 0.5 percent.

Table 9.-Fatal accidents on completed sections of the Interstate System, 1968-age and sobriety of drivers, as reported by investigators

Age	Total number of drivers	Drivers not reported		Total number reported	Reported as drinking		
		Number	Percent of all drivers		Number	Percent of all drivers	Percent of reported drivers
Number of drivers, all ages.	3,972	807	20.3	3,165	700	17.6	22.1
17 and under	93	13	14.0	80	8	8.6	10.0
18.	146	31	21. 2	115	29	19.9	25. 2
19	137	31	22.6	106	32	23.4	30.2
$20-24$	${ }^{742}$	166	22.4	576	175	23.6	30.4
Total under 25	1,118	241	21.6	877	244	21.8	27.8
25-34	1, 925	149	16. 1	776	177	19.1	22.8
35-44	789	146	18.5	643	144	18.3	22.4
45-54	565	129	22.8	436	91	16.1	20.9
55-64.	336	70	20.8	266	28	8.3	10.5
65-74......	143	28	19.6	115	11	7.7	9.6
75 and over-...	42	11	26. 2	31	2	4.8	6.5
Not reported..	54	33	61.1	21	3	5.6	14.2

${ }^{1}$ This table includes drivers of all vehicles involved in the accidents as opposed to table 8, which includes only one driver for each accident.

Vehicle defects

Police investigation reports gave little information on the condition of vehicles involved in accidents. Some of the report forms had no provision for information on vehicle condition. Many times this information was only one of several items listed in a general category for reporting circumstances that apparently contributed to the accident. The other items referred to driver condition, road defects, excessive speed, weather conditions, etc. Seldom was more than one item checked, and often none was checked, except when an obvious violation was involved.

Information on vehicle condition usually is lacking in these reports because the immediate and urgent responsibility of investigating officers is to injured persons and to restoration
of traffic, leaving little or no opportunity for detailed inspection of the vehicles on the scene. Consequently, only 10 percent of the reports referred to apparent vehicle defects and nearly three-fourths of these referred to tires-usually to inadequate tread depth rather than to actual tire failures. A very few reports listed defective brakes or lights. The proportion of vehicles reported to have defects was essentially the same as that in the 1967 study, and was not inconsistent with a National Safety Council finding that defective vehicles were involved in 7 percent of the fatal accidents on turnpikes in 1966 (4).

Seat belts

Information on seat-belt availability and use was reported for three-fifths of the drivers
involved in the 2,754 fatal accidents. Althoug belts were available to 45 percent of thes drivers, only half used them. There wa no significant difference between the numbe of male and female drivers who used belts The foregoing percentages are affected by th number of cargo vehicles, about a fifth of th total, relatively few of which were equippe with restraining devices.

Vehicle Drivers

Age and sex of drivers

More than four-fifths of the drivers pr marily responsible for the fatal accidents ${ }^{4}$ wer males. According to Public Roads estimate (5), males constituted 58.5 percent of a licensed drivers, but any comparison of thi figure with accident involvement is misleadin because relative exposure was not considerec Also, males were overrepresented, as few carg vehicles were driven by females. There wer no significant differences between the propos tions of males and females involved in th several types of accidents.

Compared with 28.5 percent of the female slightly more than a third of the male driver were less than 25 years old (table 6). In th age group, more drivers, both male and femal were involved in single-vehicle accidents tha in multiple-vehicle accidents. According t Public Roads estimates, approximately 2 percent of all licensed drivers are in tr under- 25 age group, compared with the 32 percent involved in these accidents. Agai this comparison is deceptive as it ignor relative exposure. Younger drivers are almo certainly overrepresented in total traff volumes, although no statistical document: tion exists to support this fact. Conversel drivers 65 years old and older constitu nearly 8 percent of the licensed drivers, bi these drivers were involved in only 5.4 perces of the accidents.

There were some significant differences the age distributions of drivers in specif types of accidents. Drivers under 25 years age, for example, were responsible for almo 40 percent of the single-vehicle, off-the-ro ε accidents and for only 25.1 percent of $t]$ multiple-vehicle accidents. Drivers 65 yea old or older caused 15 percent of the head-c collisions, which resulted from driving wrong lanes of divided highways, but the were involved in fewer than 5 percent of $t 1$ single-vehicle accidents.

Physical condition of drivers

The physical condition of three-fourths the drivers responsible for the 2,754 acciden was reported by investigating officers (tab 7). No physical defect was recorded in percent of the reports that contained this i formation. The condition most frequent reported was sleep or dozing- 77 percent the defects recorded for all accidents al

[^5]able 10.-Characteristics of single-vehicle, off-the-road fatal accidents on completed
sections of the Interstate System, 1968

Type of accident	Total		Vehicles leaving the road			
	Number	Percent	Left side of road		Right side of road	
			Number	Percent	Number	Percent
Total accidents, all types Struck fixed object:	1,462	100.0	695	100.0	767	100.0
Total	1, 208	82.6	540	77.7	668	87.1
Overturned.-	1,480	32.8	230	33.1	250	32.6
Overturned only	245	16.8	152	21.9	93	12.1
All overturns...-	725 9	49.6 0.6	382 3	55.0	343 6	44.7 0.8

1 percent for drivers involved in off-the-road ccidents. Presumably, there is no clear line i demarcation between the drivers who were sleep or dozing and those who were fatigued. atigue constituted an additional 9 percent f the driver defects reported. Particularly gnificant is the fact that 92 percent of the rivers responsible for rear-end collisions who ere reported as having defects were asleep r fatigued. The percentage for collisions with arked vehicles was slightly smaller. Eight ercent of the defects reported involved lness; most frequently mentioned were urdiac conditions and effects of medication. lost of the remainder, 6 percent, were rivers with bodily handicaps and those who ere distracted, principally by events within le vehicles.

obriety of drivers

Police investigation reports, completed portly after accidents occur, are not conusive sources of information on alcohol in ccidents. The available reports indicated Lat 23.6 percent of the drivers responsible or the accidents had been drinking. As shown I table 8, this percentage is equivalent to 32 ercent of the drivers whose sobriety was reorted, which is well below the proportion ferred to in many individual sample studies 1 which alcohol is reported to be a contribut1 g factor in at least half the fatal motorehicle accidents. There are several possible rplanations for this apparent inconsistency:

- Sobriety was not reported for 26 percent i the drivers primarily responsible for the acidents discussed in this report.
- Results of blood alcohol tests, if given, ere not available at the time the accident ports were completed.

Table 11.-Fixed objects struck first in single-vehicle, off-the-road fatal accidents on completed sections of the Interstate System, 1968

First object struck	Number	Percent
Total, all objects.	1,208	100.0
Guardrail ${ }^{1}$ -	364	30.1
Bridge or overpass	217	18.0
Sign----...------	97	8.0
Embankment_	86	7.1
Curb---	72	6. 0
Divider ${ }^{2}$	71	5. 9
Pole ${ }^{3}$--	63	5. 2
Diteh or drain.	57	4.7
Culvert......-	51	4.2
Fence ${ }^{4}$ -	28	2.3
Tree.	26	2.2
Other	76	6.3

${ }^{1}$ Includes cable type.
2 Includes rail, concrete, and chainlink.
3 Principally light poles.
${ }^{4}$ Principally right-of-way fences.

- Administration of tests was refused by coroners or hospitals.
- Insufficient evidence for prosecution.

Undoubtedly, the lack of information was due, in part, to inadequate investigating and reporting, as was evident from the proportions of drivers, from zero to 75 percent, whose sobriety was not reported in the several States. A tabulation was made of data from 12 States in which the sobriety of at least 90 percent of the drivers was reported. The reports from these 12 States were the most complete and detailed of available reports and were not concentrated in any section of the country. The result showed that, of the 1,276 drivers whose sobriety was reported, 22.8 percent had been drinking, a figure slightly under the 23.6 percent reported for all States.

The data shown in table 8 may, therefore, be reasonably representative of the actual situation. As indicated in the table, 32 percent of the drivers whose sobriety was reported had been drinking and 9 percent were obviously intoxicated. There was a relatively large proportion, 18 percent, whose extent of impairment was not reported because no sobriety test was administered or tests results were unavailable when initial reports were completed. More than half, 52.5 percent, of all wrong-way drivers, or 74 percent of those whose condition was reported, had consumed some alcohol. With respect to other individual types of accidents, there were no significant deviations from the general pattern.

According to a tabulation of the reported sobriety of all drivers involved in the accidents, the highest proportion of drinking drivers was in the 20-24 age group (table 9), which agrees closely with the age distribution of all male drivers responsible for the accidents (table 6). The highest proportion of drinking female drivers however was in the 25-34 age group.

None of the studies on the role of alcohol in fatal accidents reviewed was specifically concerned with the Interstate System. There are certain traffic characteristics of the Interstate System which differ from those on most other highways. In 1967, the fatal accident rate on the Interstate System was slightly more than half the rate for all other highways. Presumably this was largely a reflection of the superior design of the Interstate System. But factors other than highway design seem to be involved. Most trips on the Interstate System are probably longer than those on other highways and, except in highly urbanized areas, they tend to be for somewhat different purposes. Travel to and from social functions and places of entertainment where alcoholic beverages are served may be less common on the Interstate System. Moreover, alcoholic beverages, obtainable from taverns and bars located at frequent intervals on other types of highways, are not obtainable on Interstate highways.

Accordingly, there may be a lower rate of drinking and driving on the Interstate System than is suggested in certain studies usually used as a basis for conclusions concerning drinking and driving.
able 12.-First and second fixed objects struck in single-vehicle, off-the-road fatal accidents on completed sections of the Interstate

Single-Yehicle, Off-the-Road Accidents

More than half, 53.1 percent, of the 2,754 accidents involved vehicles that ran off the road and did not collide with another vehicle; they constituted almost four-fifths of the single-vehicle aceidents. A summary of the characteristies of these accidents is given in table 10. More than four-fifthe of the vehicles struck fixed objects after leaving the road and two-fifths of these subsequently overturned. Another 16.8 pereent overturned but did not strike a fixed object - this does not include the 31 vehicles which overturned without leaving the road. Overturns occurred in half the accidents of this type. Fewer than one percent of these off-the-road vehicles neither struck a fixed object nor overturned; in several of these accidents the fatalities resulted from ejection of the occupants.

Of all the vehicles that lift the road, slightly more than half went off the right side. These vehicles struck fixed objects more frequently, as more fixed objects are generally placed on
the right side of the road than in medians. The placement of fewer objects in medians presumably is the reason for the larger proportion of vehicles that ran off to the left and overturned without striking a fixed object.
The frequency with which different types of fixed objects were struck first by vehicles involved in these accidents is shown in table 11. Guardrails ranked first, 30 percent of the total, because they are usually the closest targets for out-of-control vehicles. Dividers are shown separately despite the similarity of their function to that of guardrails.
Of the 1,208 vehicles that left the road and struck a fixed object, 468, or nearly twofifths of the total, subsequently struck some other type of fixed object. For example, 102 of the vehicles that first struck a guardrail subsequently hit a bridge or overpass element. (See table 12.) Where initial impacts involved bridge or overpass elements, relatively few vehicles subsequently struck other objects, as might be expected because of the substantiality of bridge and overpass structures. Virtually none of the reports distinguished
the fixed-base signs and poles struck from those that have breakaway features.

REFERENCES

(1) Fatal and Injury Accident Rates or Ferteral-aid and Other Highway Systems/196 U.S. Department of Transportation, Federa Highway Administration, Bureau of Publid Roads (1968 edition in preparation).
(2) How to do a Cost-Benefit Analysis ? Motor Vehicle Accident Countermeasures, by J. L. Recht, National Safety Council, Scp tember 1966, p. 20.
(3) Official Used Car Guide, current issue National Automobile Dealers Used Car Guid Co., Wash., D. C.
(4) Accident Facts, National Safety Council Chicago, Ill., 1967 edition, p. 49.
(5) Highway Statistics 1967, U.S. Depart ment of Transportation, Federal Highwa: Administration, Bureau of Public Road p. 43 .

Highway Research and Development Reports Available From Clearinghouse for Federal Scientific and Technical Information

The following highway research and development reports are available from the Clearinghouse for Federal Scientific and Technical Information. Sills Building, 5285 Port Royal Road, Springfield, Ta. 22151. Paper copies are priced at $\$ 3$ each and microfiche copies al 85 cents each. To order, send the stock number of euch report desired and a check or money order to the Clearinghouse. Prepayment is required.

Highway research and development reports available from the Clearinghouse are also listed by subject in Public Roads annual publication Highway Research and Development Studies (see inside back cover) according to the goals and projects of the national program of highway research and development.

Slock No.
PB 17393:

I'B 173946
PB 173947

PB 173048
Report on the Use of Troxler 104 Probe and 115 Gage for Asphalt Content Determina-tions-Final Report, March 1966.

PB 17394!

Stock No.
PB 173950
1'B 173951

PB 173952
PB 173958

PB 173959

PB 173960

PB $\quad 173061$
PB 173962

P13 173963
I'B 173!64

1'13 173065
1'13 173966
$\begin{array}{ll}\text { PB } & 173967\end{array}$

113 173968

1'I3 174001
P13 174005

A440 Steel Joints Connected by A490 Bolts, August 1965. (Pa.).
A Dynamic Stress Study of the Aluminum Bridge Over the Appomattox River at Petersburg, October 1965. (Va.).
Behavior of Large Bolted Joints, August 1965. (Pa.).

Traffic-Linkage Patterns Between a Metropolitan Area and the Communities Within its Rugion of Influence.
Response of Simple Span Highway Bridges to Moving Vehicles, September 1963. (III.) Response of Three-Span Continuous Highway Bridges to Moving Vehicles, January 1964. (IIl.).

Computer Program Development, December 1965. (Tex.).

The Impact of Traffic on Residential Property Values and Retail Sales in Cham-paign-Urloana, Illinois, February 1965.
Sixth Street Freeway Traftic Study (1966). (Kansas City, Mo.).
Simulation of Traftic Flow as a Basis for Interchange Design.
Offtracking Calculation Charts for Trailer Combinations, January 1966.
Bolted Hybrid Joints, September 1966. (Pa.).
Class I Bituminous Mixtures, September 1966. (Ky.).

Interim Performance Report-Experimental Use of Thermoplastic Pavement Striping Materials, Report No. 4, September 1966.
Influence of Load History on Cracking in Keinforced Concrete, August 1966.
Deformation Characteristics of Granular Materials Subjected to Rapid, Repetitive Loading, March 1966.

Stock No.

PB 174006
$\begin{array}{ll}\text { PB } & 174007\end{array}$
PB 174008

PB 174009
PB 174012

PB 174013

Pl3 174014
Pl3 174015

PB 174016
$\begin{array}{ll}\text { P13 } & 174017\end{array}$
P13 174128

P13 174129

Evaluation of Nuclear Moisture and Dens Gages, June 30, 1966.
1'B $1 / 4131$ Exploration of Methods to Determine Optimum Use of Indigenous Materials f IIighway Construction, June 1966.
(Continued on p. 238)

Billboards and Motorists' Needs

BY THE FEDERAL HIGHWAY ADMINISTRATION

Reported by ${ }^{1}$ FLOYD I. THIEL, Ecomomist: Office of Policy Planning

Introduction

ROADSIDE conditions along the highways today not only are complex, but some aspects of the involved roadside environment-continual littering, encroachment of vehicles on medians and other landscaped areas, prolifaration of billboards in some areas, and appearance of jumbo billboards four times larger than their predecessors-seem discouraging. But amid the seemingly hopeless marring and sluttering of the landscape, there are a fow hopeful signs, particularly concerning billboards. There seem to be fewer billboards, at cast along some highways, especially those billboards that do not serve motorists' needs.
In the past, more attention seems to have been given to the number of billboards than to the type of information on the signs. For xample, billboard regulation is much more soncerned with the number of billboards permitted on the roadside than with the confent of the sign messages themselves. Yet :ome signs deserve the altention of motorists nore than others. Both critics and supporters f highway-billboard advertising can agree hat billboards with gas, food, and lodging nessages are more likely to serve motorists' leeds than those that contain other mesages. Also, it is fairly obvious that some sillboards, regardless of regulations, will renain available for advertising in the future.

[^6]What is not at all clear is the extent to which the available billboard space will be used to serve motorists' needs. Fragmentary information, however, indicates that billboard space, especially on the giant-size billboards that are springing up, is being used increasingly for highway-oriented messages rather than for general product advertising.

Some Disadvantages of Giant Billboards

Even though giant billboards now seem to be used primarily for highway-oriented advertising and may be more acceptable to motorists than if they were used for advertising that does not serve motorist needs, general use of these giant signs would be disadvantageous. Many of the esthetic objections to conventional billboards would be magnified if larger billboards were used. Furthermore, the proliferation of giant billboards tends to stymie other ways of communicating with motorists, like information sites, that would be less harmful to the landscape. A definite disadvantage would be the increased difficulty that small groups, like civic or service clubs and chambers of commerce, with small advertising budgets, would have in getting their messages to motorists because of the more expensive space on giant-size billboards. According to a study On motorists' information needs (1), ${ }^{2}$ the cost

[^7]of renting space on a giant-size billboard is $\$ 230$ to $\$ 350$ per month.

Changes in Highway Advertising

Highway billboard advertising is undoubtedly influenced by several factors, including billboard regulation. Some obvious changes in billboard-advertising practices usually can be traced to their causes. Others are harder to perceive or interpret, and their causes cannot be traced with any confidenee, largely because the sample of information available for analysis is a small part of all the relevant information. The magnitude of the total information available is illustrated by the fact that about 1.1 million advertising signs have been erected along nearly 300,000 miles of Interstate and other primary highways by nearly 4,000 establishments that use outdoor advertising. The nature and size of the outdoor advertising industry is deseribed in a Public Roads staff report issued in 1967 (2).

The large billboards, which are about 20 by 40 feet or more, giant size (12 by 24 fect regular size), and which are appearing some distance from roadsides in rural areas, are among the more recent developments in highway advertising. These signs seem to be beyond the 660 -foot limit of the right-ofway referred to in the 1955 and 196. legislation to control billboard advertising. They represent a disadvantage or a failure of

Giant billboards seem longer and higher than many rural buildings.

Table 1.-Billboards and highway mileage, 1966

	Illinois 1		Iowa ${ }^{1}$		U.S. total ${ }^{1}$	
	Luterstate	Other Federalaid primary highways	Interstate	Other Federalaid primary highways	Interstate	Other Federalaid primary highways
Billhoards 2 \qquad number. Mileage ${ }^{3}$ Billboards per mile (both sides) number	$\begin{gathered} 4,000 \\ 8!90 \\ 4 \end{gathered}$	$\begin{gathered} 60,000 \\ 11,000 \\ 5+ \end{gathered}$	$\begin{array}{r} 350 \\ 380 \\ 1 \end{array}$	$\begin{array}{r} 98,000 \\ 10,000 \\ 10 \end{array}$	$\begin{gathered} 75,000 \\ 21,000 \\ 3+ \end{gathered}$	$\begin{array}{r} 1,000,000 \\ 223,000 \\ 4 \end{array}$

Ficures are rounded.
Office of Plannine ${ }_{3}{ }^{3}$ The Avationai sustem of Interstate and Defensc IIighuays, improvement status of system mileage as of January 1, 1066, Bureau of 'rublic Roads. Office of Engineering
existing regulatory legislation. Regardless of What may happern to these giant billboards in the future, existing practice in States with billboard regulation differs noticeably from that in states without billboard regulation. Changes oceurring in Texas, a state without billboard control, are discussed later.

Number of Billboards

The most obvious change in billboard activities is the decrease in the number of billboards along some types of highways. Along all Interstate highways inventoried in 1966. for example, billboards on both sides of the road averaged about theee per mile. Along other Federal-aid primary (FAP) highways, they averaged about four per mile. (siee table 1.) In selected sitates the differenee int sign frequeney along Interstate and other Federal-aid primary highways was very noticeable. In Iowa, there was an average of only one billboard per mile along Interstate highways, but nearly 10 per mile along other Federal-aid primary highways. (sise table 1.) of course. statistics on aterage numbers of signs per mile are misleading as signs often appear in clusters rather than at regular intervals.

An additional indication of changes occurring in highway-advertising practice was provided by a 1969 inventory taken at driving speed along a part of Interstate 80 in Iowa and Illinois. Along 200 miles of this road in Iowa there was an average of about one sign every 2 miles, nearly all giant billboards. (Sce table 2.) Between 1966 and 1969 , the number of billboards along Interstate Highway so in Iowa declined from about one sign per mile to about one sign every 2 miles. (See table 3.) The State of Iowa has agreed to regulate billboard advertising under the Highway Beautification Act of 196.5.

Although the number of billboards along Interstate Mighway so in Iowa seems to have deelined, in Illinois the number may have increased, but only slightly. (See table 3.) Along rural Interstate Highway so in Illinois, there is an average of nearly two billboards per mile, about i.j percent of which are giant size. The numbers of giant- and regular-size billboards on this road are shown in table 2. Illinois does not yet have an agreement to control billboards under the 1965) legislation, but it is one of the states that is qualifying for the bomus to control billboards under the 19.5 legislation, which permits a number of execp)-
tions for previously existing right-of-way, crossroad right-of-way, etc.

Analysis of recent experience in Texas provides some helpful insight into highway-advertising practices in a State that has no billboard control. Along nearly 1,000 miles of Texai rural Interstate highway, the number of signboard structures increased more than 17 percent from 1966 to 1968. There was no apparent change in the amount of space used to advertise motorist services, there were no giant size billboards set back from the highway, but there was a substantial shift from the use of smaller signs to the use of larger signs.

Along Interstate routes on new locations in Texas, the number of billboards increased fron 2.6 to 3.8 signs per mile, or nearly 50 percent in the period 1966-68. Along old routes the increase was from about cight signs per mile in 1966 to nine per mile in 1968 . Along 30 miles of Interstate Highway 4.5 between Houstor and Galveston, a suburban area, the number of signs with their own supports increased 3: percent in the same 2 - year period to more than 10 per mile. There were an additional five plus signs per mile without their ownsupporton fences, utility poles, ete., which "wer alternately torn, tattered, rusty, and bent." (3)

Table 2.-Size of billboards along rura sections of Interstate 80 in Illinois and Iowa, 1969

1 According to a 1367 inventory of the 1 es Moines-to-Daven. port, 165 -mile segment of Interstate 80 , there was an averag 0.6 signs per mile- 85 giant-size signs, 25 standard-size sign: and three trailers used as signs. The inventory included bol urban and rural portions of I-80 and was taken during round-trip drive. The 1969 inventory reported here was take during a one-way drive.

Table 3.-Number of billboards along rural areas of Interstate 80 in Illinois and lowa, 1966 and 1969

		Inventoried in 19966 ${ }^{1}$		Inventoried in 1!6932	
		Total	Signs per mile ${ }^{3}$	Total	Sigus per mile ${ }^{3}$
Illinois Iowi	$\begin{aligned} & \text { number } \\ & \text {. . do. } \end{aligned}$	$\begin{array}{r} 220 \\ 230 \end{array}$	${ }_{4}^{1.5}$	$\begin{aligned} & 300 \\ & 145 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 0.5 \end{aligned}$

$196 i 6$ sign inventory by State Highway Departments and the Bureau of Puhlie Roads.
2 Both sides of the right-of-way included in signs per mile. The 1969 figures are expanded from ans unstematic sample of ipproximately 60 percent of the I-80 mileage in Illinois and 66 percent in Lowa.

3 Approximate mileage involved- 150 in Illinois and 300 in lowa.
4 Based on estimated 250 miles opened to traflic.

Table 4.-Motorist exposure to advertising signs on Federal-aid primary highways, $1966{ }^{1}$

${ }^{1} 1966$ inventory, State Highway Departments and Bureau of Public Roads. Signs inventoried included small signs.
About 21,000 miles
Assuming that about 55 percent of the signs are highway oriented, as along Interstate 80 in Illinois in 1966
4 About 223,000 miles.
5 Assuming that about 25 percent of the signs are highway oriented, as determined in a sample of 14 States.

Billboards Serving Motorists' Needs

There are indications that more billboard spaces are being used for motorists' needs than for general advertising, as suggested previously. According to logic, when fewer billboard spaces are available to communicate with passing motorists, more space will be used to convey gas-food-lodging messages that motorists may need, and less space to advertise
tobacco, alcohol, fertilizer, insurance, and other products that motorists, as motorists, do not need.

Motorists' exposure to siguboards, particularly the nonhighway or general types, seems to differ between highway systems and as time progresses. It was indicated by the 1966 sign inventory of all the States that non-highway-oriented advertising appeared about.
one and a half times per mile of Interstate and about there times per mile for other Federalaid primary highway: (siee tahle 4.) ()f course many of the signs on Federal-aid primary highways: were older and smallep than those on Interatate routes.

Along rural sections of Interstate Highway $8(0$ in Illinois and Iowa, motorists are now apparently exposed to nouhighway-oriented advertising lose frequently thath they were before 1966. In 1966, a motorist could travel about 2.7 mile along $\mathrm{f}-80$ in Iowal, and about 1.5) miles in Illinois, without seeng a nonhigh-way-oriented sign. In 1969, he can travel nearly 100 miles in Iowa and is plus miles in Illinois, without seeing such signs (table 5). Interstate routes are handing an increasing share of motor vehicle travel, which indicates that motorists' exposilure to nonhighwayoriented billboards may be deelining. Of couree, Interstate Highway 80 may not be trpical of all Interstate highwars; ite 1 ratfic seems to be inereasing at a faster rate than is normal for most Interstate routes-3.3 percent and more compared with 6 to 8 pereent for the Lis. overall. Motorists have better visibility on I-80 in Iowa and Illinois thans on many other Interstate routes, but siant billboards beyond 660 feet are appearing ceell in arealike Maryland and Yirginia where visibility sometimes is restricted by terrain or forests.

Motorists can make better conomic and driving choice if they have enough useful information, but ther camot assimilate very many messages in a limited period of time. Consequently, some sign messages serve motorists' needs better than others, a concept that is supported by motoriats responses to queries about what trpes of messages they prefer or find acceptable. In one studis, respondents were about twice at favorably

Strategically located billboards often appear in approaching motorist's direct vieu, although location is apparenty bot feet from the roadside.

Cloweиp riew of giunt billboard under construction shows relative size of normal-size man. According to the mumber of 4 - by 8 -foot plywoor sheets and the size of supporting structure, the completed sign will be 34 feet long and $20-21$ feet wide.

Table 5.- Notorist exposure to highway-oriented messages and other messages along rural 1-80 in Illinois and Iowa, 1966 and 1969

	Illinois		Iowa	
	Iighway-oriented messages	Other messages	Highway-oriented messages	Other messages
1966				
	120	100	140	90
			2500	250
Distance het ween signsmiles...	1.2	1.5	1.8	2.7
1196!				
Signs inventoried	15%	18	89	2
Length of highway inventoriedmiles--	95		200	
	1.65	0.2	0.5 2.2	0.01

1 (tas, foorl, and lodging primarily.

disposed foward highway sorviee signs $(51$ pereent) as they were toward signs advertising other products ${ }^{2} 27$ pereent) (4). In another atudy, is pereent of the rexpondents regarded billboard- in gemeral as very useful, and 4.5 perecol thonght hotel and motel billboardWere fery ltseful (5). Respondents disiapproved mosit hillboard mesiagges that do mot serve motorists' needs.

In the past, approximately a quarter of all the adrertising messiges pertained to motorist serviess. Aecording to the Publie Roads Staff Report, p. 41 (2), in three separate analyses by Texas Ad. II University, the University of Tennesisere, and the Burean of Public Lionds, the pereentages of billboards used for motor-
ists' needs were determined to be 22,33 , and 26 respectively. Along rural Interstate Highway $X()$ in Illinois and Iowa, the 1966 inventory indicated that a higher percentage of billboards were used for highway-oriented mes-sages-about 5 an pereent in Illinois and 60 pereent in Iowa-and the 1969 survey along I-8() in Illinois and Iowa indicented that nearly all the elasified billboard spaces were being used for motorists' needs. In fact, execpt for a Maytag message in Iowa, virtually 100 pereent of the space on giant billboards is being used for highway-oriented messages like gas, food, and lodging. In another study in Jowa (1), it was also noted that most giant billboards were being used for motorist serviees. In 1966, a few
signs that were larger than standard size haw appeared in Iowa.

In table 6 the types of messages on bill boards surveyed in 1969 along Interstat Highway 80 can be compared with message on signs inventoried along I-80 and elsewher in 1966. Highway oriented messages accounter for about 25 percent on all Federal-aid high ways, for 55-60 percent on I-80 in 1966, ans for 88-100 percent on I-80 in 1969. In table $\overline{7}$ sign messages along Interstate Highway \boldsymbol{R}^{\prime}) i Illinois and Iowa can be compared with thos along all Federal-aid highways. As might b expected, a higher percentage of Interstal signs are being used for motorists' needs.

The increasing use of billboard space f_{1} motorists' needs is apparent when the 196 and 1969 data for Interstate Highway 80 al compared. (See table 8.) The percentage , signs used for motorists' needs increased fros is perent in 1966 to more than 90 percent i 1969, a difference that is unlikely to has ocenmed by chance-apparently less than ou chance in five, as the difference tests signil cancer at the twenty percent level. (See footnoti in table 8.) Indications that these apparey differences are a result of canse rather tha chance obviously does not reveal what 11 canse is. A combination of causes is probab involved here-billboard regulation resultir| in fewer and more expensive sites; insufficier time for signs to be erected on some ne highways; industry's improved pereeption what is needed, what is profitable, and wh. will be tolerated; and other changes in mai
able 6.-Sign memages on certain Interstate and other Federal-aid primary highways

Survey or sample ${ }^{1}$	Signs used for motorist needs
1966 group	
Federal aid primary lighway in 14 States 2 Texas Federal-aid primary highway ${ }^{3}$	Percent
	? 29
	22
Temmesse Federal-aid primary highw:a 4	33
Illinois ${ }^{\text {c }}$. . . .	55
Iowa ${ }^{\text {a }}$	60
1969 group ${ }^{\circ}$	
Illinois, I-80, rural signs:	
Regular size - .-. -	88
Lowa, I-80, rural signs:	
Regular size	100
Giant size	98

1 Differences between the two groups are significant at he 5 percent level, using a Wilcoxon-Mann-Whitney test. C Based on a Bureau of Public Roads sample, 1 percent of a wifi highway sign inventory from 14 States: Alabama, haska, Califomia, Colorado, Comnecticut, Indiana, Louisi1a, Maryland, Michigan, Minnesota, Mississippi, Missouri, lont:ana, and Tennessee.
${ }_{3}$ Economic Effects of the Highway Beautification Program, (1. Adkins, W. F. MeFarland, G. H. Meuth, J. T. Wynn, exas A\&M University, 1966.

+ The Economic Impact of the Ifighway Beautification Act a the Outdoor Advertising Industry, Landowners, and Sclected cenic Attractions in Tennessee, L. S. Pipkin and F. L. Cendrix, University of Tennessee, 1966 .
i A il signs on I-80 shown on 1966 inventory of signs outside jrporate boundaries.
F From 1969 sample of $60+$ percent of I- 80 mileage, taken at !uising speed.
cnance and in improved lighting that are ccurring in the industry.

Conclusions

Although billboard practice appears to be hanging, the apparent changes cannot be nterpreted with any confidence because infornation is limited. Developments like giant fillboards seem contrary to the intent of the
highway beautifieation program. Efforts to ban billboards from the motorist's view rather than to restrict them within a limited distance of the highway, such as 660 feet, raise a question as to how long these billboards may exist. Even if they are permitted to remain on the landscape, current practice indicates that billboard regulation may cause most of the space to be used to serve motorists' needs.

Table 7.-Sign messages-Interstate and other Federal-aid primary highways

${ }^{1}$ Differences between the two groups are significant at the 5 percent level. For sources, see table 6.

Whether a large proportion of the giant billboards would continue to be used for motorist needs, if these giant billboards are permitted to proliferate, is questionable; however, attention needs to be given now to the increasing number of them and, perhaps, to assuring that messages serving motorists' needs are given perference at locations where billboard space may remain available in the future.

REFERENCES

(1) Information Needs: The Interstate IIighway Motorist in Iowa, prepared by Aurthur D. Little, Incorporated, for the Cowa State Highway Commission, 1967.
(2) Economic Impact of the Highway! Beautification Act, Staff Report, Burean of Publie Roads, Office of Research and Development, 1967.
(3) Texas Shucties Relating to the Highway Beaulification Program, by IV. (i. Adkins et al., Texas Transportation Institute, Texas A \& M University, 1968.
(4) Estimates of the Impact of Sign and Billboard Removal Under the Highway Beautification A.ct of 1965, by James 13. Cloonan et al., University of Missouri, 1966.
(5) Traveler Attitudes Toward Highway Billboard Advertising, A Survey of Selected Wyoming Motel Patrons, by Dwight M. Blood, University of Wyoming, 1969.

Table 8.-Sign messages along rural sections of Interstate 80 in Illinoi- and Iowa, 1966 and 1969

Survey or sample 1	Signs used for motocist needs
1966 group 2	
Illinois, all signs Iowa, all signs . .	$\begin{gathered} \text { Percent } \\ 55 \\ 60 \end{gathered}$
1969 group ${ }^{3}$	
Illinois: Regular size signs Giant size signs....	$\begin{gathered} \text { Six } \\ \text { lot } \end{gathered}$
Iowa: Regular size signs. Giant size signs...	$1 m$

${ }^{1}$ Differences between the two groups are significant at the 20 percent level.
${ }^{2}$ All signs on I-80 shown on 1966 inventory of signs outside corporate boundaries.
${ }_{3}$ From 1969 samule of $60+$ percent of $[-80$ miloage, taken at cruising speed.

Quality Assurance inHighway Construction

Part 5-
 Summary of Research for Quality Assurance of Aggregate

Determining aggregate gradation by screen shaker (above and sampling compacted aggregate base course (below)two of the processes used to determine aggregate chara, teristics.

Reported by JAMES A. KELLEY, Highway Research Engineer, Materials Division

BY THE OFFICE OF RESEARCH AND DEVELOPMENT BUREAU OF PUBLIC ROADS

This is the fifth part of an interpretative summary of the progress in Public Roads research program for the statistical approach to quality assurance in highway construction. Part 1.-Introduction and Concepts, Parl 2.-Quality Assurance of Embankments and Base Courses, Part 3.-Quality Assurance of Portland Cement Concrete. and Parl 1.-Variations of Bituminous Construction were presented in previous issues of PUBLIC ROADS. The remaining part, to be presented in the next issue, is Part 6.-Control Charts.

Introduction

AREVIEW of the evaluation by statistical technigues of highway aggregate characteristies is presemed here as a condensed compilation of both historical data and data from designed quality-measurement projeets in which the degree of eomformance to specifieations was statistically estimated. The historical data are not sufficient to determine the reason for any noneonformance to the specifications. Howerer, the derigned qualitymeasurement projects do provide data io determine quality at any point in a process, to disclose operations needing corrective action, and to give a valid cestimate of specification conformance.

Reports from nine states on projects in which research data have beell obtained are abstracted and summarized in this compilation to illustrate trends in gradation analysis,
sampling and testing procedures, sand equivalent analysis as an alternate to gradation analysis, and sounduess tests for aggregate quality:

Aggregate Base Course Characteristics

Sipecifications for base course aggregate usually contain limits for gradation, plasticitr, sombdness, and amount of deleterious material. lariations in gradation have been studied rather extemsively to ascertain the degree of conformance obtained in construction. The data have been analyed statistically to determine the variation in the material itself and that arising from sampling and testing. Most of the studies have been projects sponsored conperatively by Public Roads and state Highway Departments, although some have been entirely state funded.

Nonuniformity of the final product has been disclosed by results of studies of grada-
tion of different aggregate types includ grabel, sand-gravel, and erushed stone. Diff conees in gradation were found bet ween samp taken from the borrow pit or quarry plani from the material after stockpiling, and agat from the material after it had been proceste and compacted in place on the roadw: 1)ifferenees in test results on the aggreg; of en resulted from the sampling methocsampling from a moving or stopped r compared with sampling from a loaded tru. Kepresentative sampling from an operat: or placement also gave results that diffed from those obtained by random sampling.
Combined variations frequently add up a total variance of such magnitude th, assurance of compliance with specifications doubtful. However, with the knowledge p vided by statistical analysis, it has ba possible not only to pinpoint areas or opet tions requiring improvements, but also
-termine when to take immediate corrective casures to assure better compliance.

ariance in historical data

Early statistical studies were made on data office files of completed projects. Although iis type of data was not randomly seleeted, atistical analysis lusually diselosed that easurements of base course characteristics llowed a normal distribution.
In table 1, which was extracted from a udy of historical data for 257 observations type A base in Lollisiana, it is shown that r projects considered acceptable, the mean the distribution for all sicve sizes was well thin design limits. However, the statistically imputed percentage of material within the sign limits varied for cach sieve size. The west value was 82 percent for material ussing the No. 40 sieve. The highest value is 99 percent for material passing the inch sieve.

wiance of controlled research data

In the State of West Virginia, new construcon was evaluated statistically to determine riations from design gradations. Analysis
variance disclosed that the material uriance tended to be large and the sampling id testing variances small. According to the ita, the magnitude of variance seemed to be rectly related to the amount on each sieve. The data in table 2 are an example of many udies in West Virginia and other States in hich the components of variance are isolated I statistical analysis of field data on aggreite gradation characteristics. In figure 1 , hich is a diagram from the West Virginia port, proposed 95 percent tolerance limits e shown. The tolerances are ± 13 percent 1 the sieve having approximately 50 percent - the material passing, and taper in both rections toward 0 percent and 100 percent assing where the tolerances are ± 2 percent.
ariance caused by operators, sampling methods and equipment
Variance in the gradation of aggregate ixtures often is the result of sampling and sting procedures, as well as of the material self. Several States have made quantitative easurements of these parameters. In lichigan (1) ${ }^{1}$ a field experiment was carried it to determine what part aggregate inlectors, screening sieves, and sampling ethods play in the uniformity of gradation sults. A mathematical model was prepared - analyze the variations and ascertain hether (1) inspectors require further training - sample and test aggregates, (2) testing uipment requires periodic calibration or aintenance, (3) improved precision is feasie in gradation analysis, and (4) significant teractions oceur in the experimental work. he results of this study were as follows:

- Individual inspectors and methods of mpling had a relatively small effect on adation results on the $3 / 8$-inch sieve. Acrding to an analysis of components of

[^8]

Figure 1.-Aggregate base course gradation characteristics, 95-percent probability. tolerances on job-mix formula, II est Virginia, 1966.
variance, an estimated 4 percent of the total variance was attributable to inspectors, 6 percent to sampling methods, and the remaining 90 percent to inherent material and experimental deviations.

- For material passing the No. 10 sieve, significant interaction effects among the main factors of the experiment were shown to exist. Variance of $0-8$ percent was due to methods of selecting samples, variance of $7-18$ percent was due to testing and the
remaining variance was attributable to inherent material and experimental deviations.
- The results of the analysis of variance (see table 3) indicated that interaction effect was significant enough to reduce the accuracy of major comparisons. According to the data in table 3, the combined influence (interaction) of inspectors and screening kits affected the gradation results. Also, the State found that the difference between the two sampling methods was large enough in be of

Table 1.-Base course analysis, gradation type A-historical data, Louisiana

Sieve size	Design limits	$\begin{gathered} \text { Mean } \\ \text { distribution } \\ (\mathrm{X}) \end{gathered}$	Standard deviation (σ)	Compliance with design
$\begin{aligned} & 3 / \mathrm{in} \\ & \text { No. } \\ & \text { No. } \\ & \text { No. } 20 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { Pct } \\ & 75--15 \\ & 40-60 \\ & 20-45 \\ & 10-20 \end{aligned}$	$\begin{aligned} & \text { Pct. } \\ & 40 \\ & 45 \\ & 57 \\ & 16 \end{aligned}$		

Table 2.-Base course gradation analysis-research data $(n=136)$, West lirginia

Sieve size	Design limits	$\begin{aligned} & \text { Mean } \\ & { }_{c}^{\text {distribution }} \\ & (\mathrm{X}) \end{aligned}$	Standarddeviation (σ)	Variance		
				$\underset{\left(\sigma_{\mathrm{u}} \mathrm{Matal}^{\text {Mal }}\right.}{ }$	$\underset{\left(\sigma_{2}^{2}\right)}{\text { Sampling }}$	$\begin{gathered} \text { Testing } \\ \left(\sigma_{t^{2}}\right)^{2} \end{gathered}$
	$\begin{aligned} & \text { Pct. } \\ & \text { 100) } \\ & 40-85 \end{aligned}$	$\begin{aligned} & \text { Pct. } \\ & 100 \\ & 80 \\ & 80 \\ & 50 \end{aligned}$	$\begin{gathered} \text { Pct. } \\ 0.0 \\ 3.9 \end{gathered}$	$\begin{gathered} P_{P c t .0}^{0} \\ 0.0 \\ 1 \times .6 \\ 1 \times 3 \end{gathered}$	$\begin{array}{r} \text { Pct. } \\ 0.0 \\ 5.8 . \\ 6.4 \end{array}$	$\begin{aligned} & P_{\mathrm{ct}} 10.1 \\ & 10.2 \\ & 10.2 \end{aligned}$
No. 4	20-60	${ }^{34}$	4.3	12. ${ }^{2}$	4. 1	1.1. 1.6
No. N	5-25	11 16	$\begin{aligned} & 3.6 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 9.1 \\ & 5.7 \end{aligned}$	$\begin{array}{r} 3.1 \\ 2.26 \\ \hline 2 \end{array}$	$\begin{aligned} & 0.6 \\ & 10.0 \\ & 10.1 \end{aligned}$

Table 3.-Analysis of variance for passing No. 10 sieve, Michigan

Nature of effect	Source of variance	Sum of squares	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedom } \end{aligned}$	Variance estimate	F	F lests	
						F 0.05	F 0.01
Main factors.	, 1	97.18	1	97.18	310.67	3. 90	6. 81
	11	39. 10	2	119.55	2. 12	3. 06	4. 75
	1s:	14.06	2	7. 03	0.77	3. 06	4.75
Interactions among factors	13112	25. 29	2	12. 14	1. 38	3. 06	4. 75
	11: 25	3. 61	$\stackrel{2}{2}$	1. 811	0. 20	3. 06	4. 75
	1245	280. 20	4	70. 05	37.43 6.74	2. 43	3. 45
Replication	Rusintal	1, 487. 32	162	-4.18		2.43	
	Total	2,046. 36	179	11.43			

Wichigan Report No. R-571
A Sampling methods. 3 Significant al the 1 and 5 -percent levels (highly significant).

practical importance. The relative performance of aggregate inspectors was not consistent for all screening kits. These variances were significant, although not as large as the material variance, and it was presumed that, with training and corrective maintenance, the amount of testing and sampling variance could be reduced.

Nethods of automatic aggregate sampling from a belt delivery system, and the variance rcsulting from the method used to prepare the lest sample were studied in Idaho. Samples obtained with an antomatic sampling device produced lower variance than those obtained manually, and the variance was more uniform. A direct relation was found between the splitting method and the testing variance of samples. Cross-split samples had a lower variance than those split only once. Crosssplitting is similar to quartering on a mat and combining the opposite quarters to form a single sample. Researchers tested 34 samples from Pit Le-111, collected by the manual method, and 25 samples from Pit J1-2, obtained with an automatic sampling device. The rariances for $\mathrm{Jr}-2$ are relatively small and much more uniform than those for Pit Le-111. Part of the difference was attributed to the difference in the splitting techniques. The Idaho report was prepared to permit several cross comparisons of testing and sampling work. On the basis of these tests, 17 percent of the overall variance was due to testing variance whereas 30 and 53 percent, respectively, were due to sampling and material variances.
In Idaho, extensive research (2) was also conducted to ascertain whether the sandequivalent tost procedure was sufficiently reproducible to determine aggregate acceptability. The tests performed on cross-split samples at the Moscow laboratory resulted in a testing variance of 0.96 , whereas the singlesplit samples at the Boise laboratory resulted in a testing variance of 1.85 . For sandequivalent determinations, considerable diserepaney existed between the results of the iwo laboratories; however, the test was considered satisfactory if the cross-split technique of the Moseow laboratory was used. As a result of the statistical analysis, improvements in both sampling and testing methods were initiated.

4 Aggregate inspectors
${ }^{5}$ S Screening kits.
${ }^{6}$ Significant at the 5 -percent level.

A study in California (3), was undertaken to evaluate the effectiveness and reliability of the sand-equivalent tests used for procedure control and for measuring the variation of the aggregate investigated. Tests were performed on 200 random samples from each of six projects. Gradation was determined for each sample, and the analysis of variance was reported for the results on several sieves. It was concluded that the sand-equivalent and sieve analyses, supplemented by the R value results in borderline situations, can provide satisfactory control of base and subbase matcrial. The variances for the test results on the base material were generally smaller than the variance for the subbase material,
perhaps because of the greater selectivit used for base material. Although the samplin and testing variances were relatively sma for both materials, the testing variance w : significantly larger than the sampling variane

The results of this research were hised propose revision of California aggreg:l specifications. The proposed revisions, shon in table 4, were designed so that presel specification limits could be retained by ba ing acceptance on a moving average of 11 five most recent test results. Broader limi for individual test results were establishe Based on information available to him, t resident engineer is now authorized to acce the material, provided that the average inc cates that the process is in control, even thon: a single test result may deviate from i. broader limits.

According to the California report, class aggregate base had an average sand-equi lent value of 44 with a pooled standard devition of 4.8 , and class 2 aggregate subbase $h 1$ an average sand-equivalent value of 32 witl pooled standard deviation of 5.0. The proposi specification requirements for the sal equivalent test and gradation are shown table 4 . It was stated in the report that:
the proposed specifications are to used as guidelines only and are not intend! to interfere with the present practice of desiging specifications to meet local conditions if economic reasons. Once the gradation lim: are established for a particular job, statircal specifications can be designed using

Table 4.-Digest of proposed specifications for class 2 base and subbase aggregates, California

Material	Sand-equivalent values (Test Method, California 217)			Gradation values		
	Minimum average ${ }^{1}$	Not to be lower than ?	Overall average ${ }^{3}$	Sieve size	Percent passing	
					Moving average	Individual test result
Base.	30	25	36	$\left\{\begin{array}{l} 1 \text { inch } \\ 3 \text { inch } \\ \text { Nonch } \\ \text { No. } 4 . \\ \text { No. } 30 \\ \text { No. } 200 \end{array}\right.$	$\begin{array}{r} 95 \pm 5 \\ 45 \pm 10 \\ 20 \pm 10 \\ 5.5 \pm 3.5 \end{array}$	$\begin{array}{r} 100 \\ 95(+5)(-7) \\ 45 \pm 15 \\ 20 \pm 13 \\ 5.5 \pm 4.5 \end{array}$
Subbase.	23	18	30	$\left\{\begin{array}{l} 3 \text { inch.... } \\ 21,2 \text { inch } \\ \text { No. } 4 . \\ \text { No. } 200 . \end{array}\right.$	$\begin{array}{r} 95 \pm 5 \\ 65 \pm 25 \\ 12.5 \pm 12.5 \end{array}$	$\begin{array}{r} 95(+5)(-10) \\ 65(\pm 35) \\ 12.5(+17.5)(-12.5) \end{array}$

${ }^{1}$ Five consecutive tests, each performed on independent sample.
${ }_{2}$ No single sand equivalent result to be lower.

Tahle 5.-Summary statistice for magnesium sulfate soundness tests, New York

Arithmetic means 1					Variance estimates 1			
Sand No .	Drying period		Difference in variation ${ }^{2}$	Higher	Drying period		Difference in variation ${ }^{2}$	Higher
	6-hour	30-hou:			6-hour	30-hour		
1	Pct. 5. 64	$\begin{aligned} & \text { Pct. } \\ & 5.10 \end{aligned}$	Insignificant		Pct. 0.23	Pct.	Insignificant	
2	17. 09	15. 74	-..eto.-.		0.05	1. 83	Significant.	30-hour.
3	23. 21	23.83	Significant	30-hour-	0.06	0. 24	Insignificant	
4 5	47.01	41.98 50.36 ilo.	i-hour...	1.37 2. 13	$\begin{aligned} & 2.88 \\ & 0.40 \end{aligned}$	simbifieant	G-horur.

[^9]Table 6.-Results for surface mixture samples, South Carolina

Sieve size	Sample location	Specification limits percent passing	Control chart values		Standard deviation		Analysis of $\overline{\text { ariance }}$			
			Average ($\overline{\mathbf{x}})$	Total (σ)	A verage ($\overline{\mathrm{x}}$)	Total (σ)	$\begin{aligned} & \text { Total } \\ & \left(\sigma_{t 0^{2}}\right) \end{aligned}$	Material $\left(\sigma_{\mathrm{m}}{ }^{2}\right)$	Sampling $\left(\sigma_{*}^{2}\right)$	$\begin{aligned} & \text { Testing } \\ & \left(\sigma_{t}^{2}\right) \end{aligned}$
3/2in.	$\left\{\begin{array}{l} \text { Plant } 1 \\ \text { Spreader 1 } \\ \text { Compacted } 1 \end{array}\right.$	Pct.	Pct. 92.0 90.0 92.2	$\begin{aligned} & \text { Pct. } \\ & 2.88 \end{aligned}$	Pct.	Pct.	Pct.	Pct.	Pct.	Pct. 7. 60
		$P c t$.$87-97$			90.7	3. 52	12. 41	$\begin{aligned} & 2.45 \\ & 8.74 \end{aligned}$	0.0	
									0.0	3. 50
	Plant........-	58-72	$\begin{aligned} & 66.1 \\ & 65.2 \end{aligned}$	3.30 3.90	92.1	3.925.84	10. 02	0.0	2. 18	$\text { 6. } 19$
	Spreader....-.			5. 71	66.8 65.7		15. 37	9.70 30.9	0.0 0.0	
No. 4	Compacted..-		65.0	4.32	65. 2	4. 28	34. 06	$\begin{array}{r} 30.9 \\ 0.0 \end{array}$	10.18	5. 15 4. 75
No. 10.	Plant..-	42-58	52.0	3.45	52.6	3. 69	13. 59	8. 33	1. 76	8.11 $\text { 3. } 69$
	Spreader.		53.0	4. 98	52.7	5. 60	31.3516.11			3. 6 5. 1) 4
	Compacted. -		54.3	3. 92	28.3	4. 01		28.15 0.0	0. 0 11. 36	5. 39
No. 40.	Plant	21-35	28.128.0	1. 70		1.91	3. 64	2. 28	11.0	1. 411
	$\left\{\begin{array}{l}\text { Spreader } \\ \text { Compacted....- }\end{array}\right.$			1.41 1.85	28.8	2.08	5. 48	4. 92 0.0	1.) 0 2. 51	
	Plant....	4-10	$\begin{aligned} & 5.7 \\ & 5.7 \\ & 6.5 \end{aligned}$	1. 06	$\begin{aligned} & 5.8 \\ & 6.34 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.38 \\ & 1.03 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 1.91 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 0.0 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.48 \end{aligned}$	$\begin{aligned} & \text { 1. } 10 \\ & 2.04 \end{aligned}$
No. 200	Spreader.			1. 20						$\begin{aligned} & 0.18 \\ & 1.44 \\ & 0.20 \end{aligned}$
	Compacted.			1. 04						

1 Number of tests performed: Plant $=40$, Spreader $=24$, Compacted $=128$
tandard deviation as reported in this study, if .o more accurate measurements are available." After publication of the report, the State jivision of Highways used similar specificaions in its construction of projects.

;alt soundness test of aggregate

In certain uses, the quality of individual ggregate particles is an important characterstic, and owing to the composition of gravel or tone, the soundness of the aggregate pieces nust be determined by certain standardized ests. In a study of Salt Soundness Tests for iine Aggregate (4), the New York Department if Transportation used statistical concepts to nvestigate the procedures for determining joth the sodium and magnesium salt soundless of fine aggregate and the methods used to udge the acceptability of a source. Data were oresented on (1) the effect of drying time on he magnitude and reproducibility of test 'esults, (2) overall reproducibility of the test with sodium and magnesium sulphates, and
(3) the combined effect of testing and production variations on the scatter of test results from single sources. The summary statistics for the soundness tests, with various drying periods, is shown in table 5.

The conclusions extracted from the New York study were "(1) that an increase in drying time in the test from 6 to 30 hours will result in no change in the magnitude or reproducibility of the test results, (2) the reproducibility of the test with sodium sulphate and the test with magnesium sulfate are not significantly different, and (3) that it is possible to place the acceptance of sources of fine aggregate on a sound statistical foundation." They recommended that "the magnesium sulphate soundness test continue to be performed at the rate of one cycle per day and that the test with sodium sulphate be discontinued.'

Even though the results of the New York study of fine aggregates were generally acceptable as reproducible results, many States

igure 2.-Relation of standard deviation to percentages passing sieves, asphallic concrete wearing course, Il est Virginia, 1966.
have not obtained satisfactory correlation between salt-soundness test results and performance. This is particularly truc for coarse aggregates.

Bituminous Concrete Aggregate Characteristics

Aggregate used in bituminous concrete mixtures is subjected to several manipulations and treatments that are not applied to base course aggregate. The aggregate is heated for drying and mixing with asphalt. Often, it is stockpiled or placed in storage bins before the mixing operations. The final mixture is spread by a mechanical spreader and then a high force is applied for final compaction and rolling. Thus, the finished layer has experienced many abrasive forces that could cause not only changes in gradation of the aggregate component, but also changes in density and stability. A more detailed analysis of variations in aggregates used in bituminous construction is contained in Part 4. However, the more important findings of individual projects are reported here.

In a study performed in South Carolina (5), random samples of asphalt mixtures were selected from trucks at the batch plant, from the roadway just behind the spreader, and from the roadway after compaction, to determine whether any progressive change occurred in the characteristics of the aggregate. A summary of this work is given in tables 6 and 7 in which the specification limits and analysis of variance for both surface and binder courses are also shown. The aggregate passing the No. 4 sieve in the surfacing mixture was within the job-mix formula only if) percent of the time by routine control sampling and 66 percent of the time by random sampling. The material passing the No. 40 sieve was within the job-mix formula 76 pereent of the time by control sampling and 88 percent of the time by random sampling. The test results shown in table 6 indicate that the average for the No. 4 material varied from 66.8 to 65.2 percent whereas the No. 40 material varied only from 28.3 to 28.8 percent, conforming more closely to the job-mix formula. The greatest standard deviation occurred on the samples from the spreader box.

Figure 3:-Relation of 95-percent probability tolerances on job-mix formula to percent passing sieves, asphaltic wearing course, West Virginia, 1966.

The characteristics of aggregate used in bituminous mixtures were also explored in West Tirginia (6). An analysis of the aggregate passing the No. 4 sieve is shown in table 8 for 10 bituminous projects. For the percent passing the No. 4 sicve, nine of the 10 projects had an average value that was within the specifications. However, the overall standard deriation for the individual projects was so large that many of the projects had a considerable amount of nonconforming material. Because of the large overall standard deviation, 4.4 percent, a change in the specified job-mix tolerances was recommended.

The following excerpts were taken from the West Virginia report:
"Tolerances for percentages passing other sieves may also require adjustment. Inspection of the data shows that the major component of the overall standard deviation, σ_{o}, is the materials variance, σ_{a}, and sampling and testing can be reduced to a negligible amount."
"The size of the standard deviation of the percent passing any sieve, neglecting sampling and testing error, depends to a large extent upon the value of the percentage passing that sieve" (fig. 2).

In the West Virginia report it was proposed that tolerances for gradation specifications be varied according to the percentage passing any sieve. The magnitude of variation to provide 95 percent probability tolerances on the job-mix formula is shown in figure 3.

Other States engaged in statistical studies of aggregate-gradation characteristics in bituminous mixtures have indicated that, for best uniformity and smallest standard deviations, control of gradation should be at the mixing plant. Job-mix tolerances for all gradations should be adjusted for the percentages expected to pass the specified sieves.

Portland Cement Concrete Aggregatt Characteristics

Because structural concrete in highway construction is critical, the specified aggregate gradation should be assured. Several researck projects were conducted to determine the bes place to sample aggregate for control, permis sible tolerances on various sieve sizes, anc alternate methods or tests to establish grada. tion uniformity.

In California, a study was performed tc determine the precision of current test method and the feasibility of using statistical quality control procedures for portland cement con crete aggregate. Several conclusions wert drawn from this study: Present controls anc specifications for aggregate gradation need $t c$ be modified because of the high material vari ance and large percentages of out-of-specifica tion gradation; sand-equivalent and cleanli. ness test methods were satisfactory; mor efficient field control would be possible if con trol charts were used; better control of grada tion could be obtained by using a movin average based on the results of the five mos recent individual tests; material and testin; variances were considerably larger than wer anticipated (see fig. 4) ; and a relatively high percentage of the aggregate failed to meet the specification, which is shown by the diagram it figure 5.

A statistical analysis of variance in aggre gate for portland cement concrete was mad by Louisiana (7). The variations in gradation of fine and coarse aggregate sampled from dif fcrent stockpiles as well as the differences be

Table 7.-Results for binder mixture samples, South Carolina

Sieve size	Sample location	Specification limits percent passing	Control chart values		Standard deviation		Analysis of variance			
			Average (\bar{x})	Total (σ)	Average (x$)$	Total (σ)	$\underset{\left(\sigma_{t}{ }^{2}\right)}{\text { Total }}$	Material $\left(\sigma_{\mathrm{m}}{ }^{2}\right)$	$\underset{\left(\sigma_{8}^{2}\right)}{\text { Sampling }}$	Testing ($\sigma_{\mathrm{t}}{ }^{2}$)
No. 4. No. 10. No. 4).. No. 200.		Pct. 80-97 35-50 25-35 None None	Pct. 93.4 93.8 93.4 40.6 43.1 32.2 32.2 34.8 18. 0 19.7 4.1 4. 0 4. 3	Pct. 3. 95 5. 19 4. 70 4.76 6.79 4.42 4.06 5.46 3. 51 2. 09 2. 66 2. 00 0.53 0.44 0.67	Pct. 93.9 93.3 93.7 40.8 41.3 32.2 32.9 34.6 18. 5 19.9 4.1 4. 1	Pct. 4. 13 4. 48 4. 61 6. 01 3. 90 4. 83 3. 74 2. 34 3. 62 0.54 0.58 0.67	Pct. 17. 09 20.07 21. 25 36. 14 15. 24 23.3 13. 96 4. 74 13.15 0.30 0.33 0.44	$\begin{gathered} P c t . \\ 0.0 \\ 3.35 \\ 4.59 \\ 8.47 \\ 21.20 \\ 4.23 \\ 7.22 \\ 14.03 \\ 0.0 \\ 2.17 \\ 3.18 \\ 2.24 \\ 0.17 \\ 0.18 \\ 0.11 \end{gathered}$	Pct. 2. 60 0.0 5. 37 0.0 7.36 3. 68 5. 86 1. 14 0.0 0.0 0.05 0. 0 0.18	Pct. 13.04 15. 43 12. 87 8. 67 4. 43 8. 38 5. 91 1. 46 10.87 0.09 0.18 0.15

able 8.-Analysis of variance of bituminous concrete aggregate for 10 projects in West Virginia

Project No.	Sample location	Number of samples (i)	Percent passing No. 4 sieve Specification 60-70				
			Average ($\overline{\mathrm{X}}$)	```O verall standard deviation (\(\sigma_{o}\))```	Standard deviation		
					$\underset{\left(\sigma_{\mathrm{a}}\right)}{\text { Material }}$	$\underset{\left(\sigma_{t}\right)}{\text { Testing }}$	$\underset{\left(\sigma_{\mathrm{s}}\right)}{\text { Sampling }}$
			Pct.	Pct.	Pct.	Pct.	Pct.
38.11.	Even . . .	96 96	66.7 67.5	2. 5	2. 5	0.0 1.6	P. 0 3.8
3235.	Even-	100	65. 6	3. 6	3. 6	1. 0.0	3.8 0.0
3235.	Odd	100	64.8	3. 3	3. 3	0.0	0.0
	Truck.-.	120	69.3	4.5	3. 4	0.0	2.9
3462	Pavement	120	65.7	4.7	4. 1		2.1
$173 \mathrm{H}(1)$ \& (2)		200 180	70. 0	4.8	3. 6	1.5 1.8 1.8	2.2
		180 120	72. 17	5. 4	4.4 3.9	1.8 0.8 0.8	1.7 0.3
$284(\mathrm{C})$ \& (4) A ASHO			61.5	4. 2	3. 9	1.6	${ }_{0} .5$
Average, all projects			66.5	4.4	3. 7	1.2	1.9

able 9.-Analysis of variance on gradation of fine aggregate for portland cement, Louisiana Percent passing No. 4 sieve

Source of variance	Sum of squares (SS)	Degrees of freedom (DF)	$\begin{gathered} \text { Mean } \\ \text { squares } \\ (\text { MS }) \end{gathered}$	Estimate of mean squares ${ }^{1}$ (EMS)	F. 05
Between stockpiles Between samples within stockpiles Between subsamples within samples Total	$\begin{array}{r} \text { 49.43 } \\ 52.44 \\ 14.35 \\ 316.22 \end{array}$	$\begin{array}{r} 8 \\ 63 \\ 72 \\ 143 \end{array}$	$\begin{array}{r} 31.18 \\ 0.83 \\ 0.20 \end{array}$	$\begin{gathered} \sigma \mathrm{e}^{2}+2 \sigma_{\sigma^{2}}+16 \sigma_{\mathrm{st}}{ }^{2} \\ \sigma_{\mathrm{e}}+2+2 \sigma_{\mathrm{s}}^{2} \\ \sigma_{\mathrm{e}}{ }^{2} \end{gathered}$	$\begin{array}{r} 28,63 \\ 263,72 \end{array}$

[^10]tween samples within stockpiles, were determined. According to the Louisiana report, "The largest component of variance is between stockpiles, which is reflective of material variance. The variation between samples within stockpiles can be attributed to either the stockpiling technique or sampling procedure." The actual results for the fine aggregate passing the No. 4 sieve are shown in table 9. The analysis of the coarse aggregate was similar to that of the fine aggregate. As shown in table 10, heavily loaded sieves had the greatest deviations and the largest amounts of material outside the specification limits. As a result of this study, the researchers prepared suggested acceptance limits and frequencies of measurement for aggregate used in portland cement, (See table 11.)

Quality control of aggregate used in portland cement concrete by sampling from the stockpiles and bins at the central plant was studied in Oklahoma (8). The dry aggregate was weighed at the bin site, the cement added, and the batch hauled by trucks to the road site where the concrete was mixed. Random samples were taken at a point in the stockpile nearest the bins. The analysis of the gradation indicated that the mean values for each sieve size were within the specification limits although many individual values were outside

Figure 4.-Analysis of variance of portland-cement-concrete coarse aggregate for material passing different sieves, California.

Figure \bar{s}.-l'ercent of material outside of specifications, portland-cement-concrete aggregate passing No. 3/4-in. sieve, project No. 2, California.
the upper and lower control limits. The Oklahoma Department of Highways recommended that the gradation determination be continued, but with certain modifications. Acknowledging that some plans provide for the sampling of aggregates at the batching bin, researchers pointed out in their report that sampling at the stockpiles permits early detection of undesirable or unacceptable aggregate, which is the purpose of quality control-to locate defective material as quickly as possible.

Summary

Some of the important findings from selectec research on the characteristics of aggregate used in base courses and in bituminous anc portland cement concrete mixtures have beer presented herc. More attention has been giver to aggregate-gradation characteristics fron source of supply to placement, than to othe characteristics. Early studies concentrated ol historical data; more recent studies wer conducted during actual field construction Comprehensive plans were devised to stud: historical data and to measure variabilit? during construction. The degree of conform ance to gradation specifications was found t_{1} vary from step to step in the processing Analysis of variance usually was applie during construction to determine causes o the variation and to locate conditions needin corrective action.

Generally, the largest deviations from spec ifications were in the material in the midd] of a stack of sieves-where a large amoun of material is on individual sieves.

Knowledge of inherent material, samplin $\varepsilon_{\varepsilon}$ and testing variations enables the enginer to design specifications with tolerances the are compatible with local conditions anc thereby, to avoid unenforceable requirement or unreasonable expense and still obtain suitable aggregate.

For aggregate control, the sand-equivaler test rather than gradation is preferred i some States, and statistical rescarch, col ducted to ascertain whether the sand-equiv: lent test is informative and reproducible, hs

Table 10.-Summary of statistical results on portland cement concrete aggregate gradation, Louisiana ${ }^{1}$

Sleve size	Average ($\overline{\mathrm{x}}$)	Standard deviation (σ)	Minimum	Maximum	Outside specifications	Specification limits	Variance (σ^{2})		
							Test	Sample	Stockpile
Grade Λ course aggregate									
	Pot. $95.1 i$ 75.4 35.5 1.3	$\begin{gathered} \text { Pct. } \\ 3.5 \\ 10.8 \\ 12.7 \end{gathered}$	Pct. 82.7 41.1 4.6 0.2	Pct. 99.9 88.8 60. 2 5. 5	$\begin{array}{r} P c t . \\ 7.3 \\ 2.1 \\ 13.5 \\ 0.0 \end{array}$	$\begin{gathered} 90-100 \\ 40-88 \\ 15-55 \\ 0-6 \end{gathered}$	Pct. 0.84 6. 41 9. 18 0.13	$\begin{array}{r} P c t . \\ 5.65 \\ 77.62 \\ 132.04 \\ 0.76 \end{array}$	Pct. 9. 97 40.72 26. 72 0.72
Fine aggregate									
No. 4. No. 16 N․ $11 /$. 0.1 (141	$\begin{gathered} 97.8 \\ 74.2 \\ 15.4 \\ 2.1 \end{gathered}$	1.5 7.9 6.5 1.3	92.1 $54 i .6$ 7.2 0.3	99.9 91.6 31.6 5.7	3.8 9.7 1.4 0.0	$\begin{gathered} 95-100 \\ 45-90 \\ 7-30 \\ 0-7 \end{gathered}$	$\begin{aligned} & 0.20 \\ & 0.70 \\ & 5.36 \\ & 0.04 \end{aligned}$	$\begin{array}{r} 0.32 \\ 10.72 \\ 39.88 \\ 0.40 \end{array}$	$\begin{gathered} 1.90 \\ 57.69 \\ 0.0 \\ 1.34 \end{gathered}$

Table 11.-Suggested acceptance limits for portland cement concrete aggregate ${ }^{1}$

Síeve size	Acceptance probability (P_{a})	Rejection probability (P_{r})	n	Acceptanco limits				Measurement frequency
				Mean		Individual		
				LL	UL	$\bar{x}_{8}-$	$\bar{x}_{8}+$	
Gradation of fine aggregate, percent passing								
$\begin{aligned} & \text { No. } 4 \text {. } \\ & \text { No. } 16 \\ & \text { No. } 50 . \\ & \text { No. } 100 . \end{aligned}$	$\begin{gathered} \text { Pct. } \\ 99 \\ 99 \\ 99 \\ 99 \end{gathered}$	$\begin{gathered} \text { Pct. } \\ 90 \\ 90 \\ 90 \\ 90 \end{gathered}$	4 4 4 4	$\begin{array}{r} 95.90 \\ 68.97 \\ 7.51 \\ 0.41 \end{array}$	$\begin{array}{r} 99.75 \\ 89.45 \\ 24.35 \\ 3.71 \end{array}$	$\begin{array}{r} 3.93 \\ 20.80 \\ 17.11 \\ 3.35 \end{array}$	$\begin{array}{r} 3.93 \\ 20.80 \\ 17.11 \\ 3.35 \end{array}$	One every 200 cu . yd.
Gradation of grade A coarse aggregate, percent passing								
$\begin{aligned} & 1 \mathrm{in} \ldots . . \\ & 3 / 4 \mathrm{in} . . \\ & 1 / 2 \mathrm{in} . \\ & \text { No. } 4 \ldots \end{aligned}$	$\begin{aligned} & 99 \\ & 99 \\ & 99 \\ & 99 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 90 \end{aligned}$	4 4 4 4	$\begin{gathered} 90.63 \\ 61.43 \\ 19.08 \\ 0.0 \end{gathered}$	$\begin{array}{r} 100.00 \\ 89.39 \\ 51.84 \\ 2.70 \end{array}$	$\begin{array}{r} 10.10 \\ 28.40 \\ 33.27 \\ 3.20 \end{array}$	$\begin{array}{r} \text { 10. } 10 \\ 28.40 \\ 33.27 \\ 3.20 \end{array}$	One every 500 cu . yd .

${ }^{1}$ Louisiana Department of Highways Report, 1966.
onfirmed its usefulness, although the amount f data at present is rather limited.
Statistical research on salt-soundness deterination indicated that drying time did not ced to be changed; that sodium sulfate isting could be discontinued, as magnesium llfate testing is satisfactory; and that it is ossible to place acceptance of fine aggregate surces on a sound statistical foundation.
In statistically-oriented research on aggrete gradation for bituminous mixtures, - formation similar to that for base courses as developed, and indicated that variation om the specifications differs according to te point of sampling. The research showed lat the variation on certain sieve sizes is msiderable, indicating either the need for aprovement in sieving operations or the itablishment of wide tolerances in the specisations to eliminate compliance disagreeent. The research also indicated that impling at the hot bins was preferred for rocess control, whereas, sampling at the mpacted bituminous layer was best for stablishing uniformity of the mixture.
Data in various studies indicated that the ggregate used in portland cement concrete
had a smaller standard deviation than the aggregate used in bituminous mixtures or in base courses, but that statistical analysis provided information for early detection of undesirable gradation or undesirable quality.

Based on their studies, highway departments in some States are revising their specifications and outlining specific sampling procedures. The use of statistically designed control charts is highly recommended for control of the characteristics of aggregate by these States. The moving average of five most recent individual test results is reported to be the most practical for controlling the construction processes.

REFERENCES

(1) Highway Quality Control Program, Statistical Parameters, Research Report No. R-572, Michigan Department of State Highways, March 1966, p. 41.
(2) Quality Control, Research Project No. 11, State of Idaho Department of Highways, May 1967, p. 16.
(3) A Statistical Analysis of Untreated Base and Subbase Materials, State of California

Transportation Agency, Department of Public Works, Division of Highways, March 1967, pp. 22 and 23.
(4) Salt Soundness Tests for Fine Aggregates, New York State Department of Public Works, September 1964, p. 3.
(5) Procedures for Using Slatistical Melhods for Process Control and Acceptance of Bituminous Mixtures, prepared by PaquetteMills, Consulting Engineers, Atlanta, Ga., for South Carolina State Highway Department, February 1966, pp. 78 and 79.
(6) Determination of Statistical Parameters for Highway Construction, Research Project No. 18, prepared by Materials Research and Development, Inc., Miller-Warden Associates Div., for the State Road Commission of West Virginia, November 1966, p. III-49.
(7) Quality Control Analysis, Part III, Concrete and Concrete Aggregates, by S. C. Shah, Lousiana Department of Highways, November 1966, p. 11.
(8) Statistical Quality Control of Portland Cement Concrete Pavements, prepared by Joakim G. Laguros, University of Oklahoma, for Oklahoma Department of Highways and U.S. Bureau of Public Roads, June 1968.

Stock No. PB 174132 I'B 174133

I'B 174134

PB 174136
PB 1;4137
PB 174232
PB 174233
PB 174234
PB 174235

PB 174230

PB 174237

PB 174238

PB 174239

PB 174314 PB 174315

PB 174316
PB 174317

PB 174318
PB 174319
PB 174320
PB 174322

PB 174323
PB 1743?4
PB 174325

PB 174326
PB 174386

PB 17438
PB 17438

PB 174401

PB 174402

PB 174403

PB 17440

PB 174405

PB 174406
$\begin{array}{ll}\text { PB } & 174407\end{array}$

Stock No.
Roadside Vegetation and Erosion Control (Ala.).
Verification of Nuclear Moisture and Density Gauges.
1966 Photographic Comparison of Land Use Areas Adjacent to Interchange Limits of the Interstate System, June 1966. (Ala.).
Soil Vibration Study, November 1966.
Glass Beads for Traffic Paints, Research Report R R 66-4, December, 1966.
The Operational Effects of Automatic Ramp Metering. (Chicago, Ill.)
Airphoto Interpretation for Soil Studies. (Wis.).
Normal Stresses in Beams Due to Non-Uniform Torsion.
A Statewide Deflection Study of Continuously Reinforced Concrete Pavement in Texas, August 1966.
Laboratory Study of the Variables that Affect Pavement Deflection, August 1966. (Tex.).
A Method to Determine Contract Work Days, September 1966.
The Effect of Galvanizing and of Other Surface Treatments on IIigh Tensile Bolts and Bolted Joints, September 1966.
Development and Demonstration of Improved Productivity for the Location Study Phase of Pre-Construction Engineering.
Mechanics of Local Scour-Draft of June 1966.
A Field Experiment of Ashphalt-Treated Bases in Colorado, October 5, 1966.
Ductility Characteristics of Bituminous Materials, December 1, 1965.
Bibliography-Survey of Library Facilities Project:
67-1-Design of Asphalt Treated Bases in Colorado.
67-2-Properties of Lightweight Concrete. 67-3-Vibration of Concrete.
Optimum Properties for Sand Shell Mixtures, November 1966.
Experimental Stabilization of Expansive Shale Clay, December 1966. (S. Dak.).
Roadway Failure Study No. 1-Final Report H-15, August 1966.
Roadway Failure Study No. 1-Research Publication II-14.
Roadway Failure Study No. 1-Research Publication $\mathrm{H}-14$, A ppendices A and B .
Flow in Aggregate-Bindor Mixtures, Progress Report No. 1, February 1967.
Investigation of a Morizontally Curved Reinforced Concrete Box Beam, December 1965.

Concrete Pipe Installations Under Various Heights of Fill. (Nebr.).
A Culvert Material Performance Evaluation, April 1, 1965. (Wash.).
A Economic Impact Study of Interstate Highway 35 E on Waxahachie, Texas, March 1966.
A Study of the Economic Impact of Interstate Highway 20 on Merkel, Texas, A pril 1966.

Dynaflect Data Used for Estimating the Stiffness of Individual Layers in Flexiblo Pavements, June 1966. (Tex.).
Effect of Degree of Synthetic Lightweight Aggregate Pre-wetting on the Freeze-Thaw Durability of Lightweight Concrete, May 1966.

The Feasibility of Minimum Speed Limits by Lane on Multiple-Lane Highways, November 1966.
Realistic Job-Mix Formula Tolerances for Asphalt Concrete, November 1966. (N. Y.). Effect of Segregation of an Asphaltic Concrete Mixture on Extracted Asphalt Percentage, February 1967. PB 174408 PB 174409

PB 174732 Bibliography-Survey of Library Facilities Project:
67-4-Deflection in Flexible Pavements.
comparison of Mathematical Versus Experimontal Flood Wave Attenuation in Part-full Pipes (for Subcritical Slopes only), November 1966.
se of Texas Dynaflect Apparatus on Minnesota Test Sections (1966)
Urban Arterial and Network Simulation.
Preliminary Investigation of Hauling Stresses in Prestressed Concrete Piles, September 1966.
Neoprene Bridge Bearing Pads Under Constant Compression and Repeated Shear, August 1966.
Study of the Safety Aspects of Holography in Highway Operation.
Lateral Distribution of Static Loads in a Prestressed Concrete Box Beam BridgeDrehersville Bridge, August 1966. (Pa.).
A Study of Bearing Capacity of Pile Foundations, August 1966.
An Investigation of Collisions of Automotive Vehicles with Break-Away Highway Sign Supports.
poxy Bonded Composite T-Beams for Highway Bridges, October 1966.
Lime-Soil Stabilization Study-A Selected Literature Review, January 1967.
A Gyratory Compactor for Molding Large Diameter Triaxial Specimens of Granular Materials, October 1966.
Factors Affecting Anchor Bolt Development, August 1966.
Reduced Visibility (Fog) Study, November 1966.

A Study of Stop Warning Systems, March 1967.

Rapid Means of Determining Density and Moisture Content of Soils and Granular Materials, January 1967.
Photometric Studies of the Austin Moonlight Tower Lighting System, October 1966. (Tex.).
Investigation of Portland Cement Stabilized Bases, October 1966.
Stabilization of Silty Soil in Alaska-Phase II, June 1966.
Secondary Mineral Alteration, January 1967
A Data Acquisition System for Monitoring Bridges in Service, July 1966.
frecasting Techniques for Determining Clay Mineralogy and Chenistry of Selected Cross County, Arkansas Soils and Ellects

Eonoric Impact of Interstate Ifigway 26 (S.C

70-Social Factors Associated with Traffic Generation in a Smaller Metropolitan

Landslides, Mareh 1966
summary of the Vehicular speed tion Project.

In estigation of the Feasibility

Equipment for Roadside Reseeding Operations. (Ill.) II. (Mo.)

Re Relationship Between the Density and avement Ice Warning Systems. lay Mineralogy and Chemistry of selected leveland County, Arkansas Soils Effects on Their Engineering Properties, November 1966

Stock No.
PB 174733
PB 174734
PB 174735
PB 174736
$\begin{array}{lll}\text { PB } & 174876\end{array}$
PB 174877
$\begin{array}{ll}\text { PB } & 174878\end{array}$
PB 174953

PB 174954
PB 174955

PB 174956
PB 174958

PB 174959

PB 174960

PB 174961

PB 174962
Mixing Time Study-Bituminous Mi (1967).

PB 174964 Experimental Use of High-Strength Re. forcing Steel, March 1966.
Part 3C Deflections of Prestressed Concr? Beams, August 1966.
The Use of Particulate Mechanies in Simulation of Stress-Strain Characterists of Granular Materials, August 1966
PB 174967 Soil Stabilization Methods for Minimizing Detrimental Effects of Frost Action Paved and Unpaved Roads in Nopl Carolina, October 1966.
PB 174968 Elasticity Relationships of Peidmont Stgrades, December 1966. (S.C.).
PB 174969 Studies on the Effect of Minus 200 Ms Materials on the Usefulness of Cert? Bituminous Concrete Aggregates, S:tember 1966. (N.C.).
PB 174970 The Use of Moire Fringes for Conere Strain Analysis, March 1967.
PB 174971 Sandstone Origin Subbase Material Stur, January 1967. (Wis.)
PB 174972 A Report on Continuity Between a C
A Report on Continuity Between a C -
tinuously Reinforced Concrete Pavem and a Continuous Slab Bridge, Augt 1966.

PB 174973 Predicting Asphaltic Concrete Equivalens with Laboratory Tests and Layer Theols January 1967.
PB 174974 Remainder and Economic Study-Inistate 95 (1966).
PB 174975 Economic Impact of Interstate 40 on Existg Development Along State Route 1 : tween Knoxville and Kingston, Tenness, and Adjacent Areas (1966)
PB 174976 Measurement of Pavement Roughness :
the Use of Such Measurements in Evaluation of Construction Procedures Evaluation of Construction Procedures
Pavement Performance, March 1! (Tenn.).
PB 174977 The Effect of Chemical Composition on Rheological Properties of Asphalts, Fruary 1967. (Ark.)
PB 174981 Evaluation of a Repeated Load Dev Through Tests on Specimens Compac by Three Different Methods.
Other highway research and development reports a vailaz from the Clearinghouse will be announced in future issues

67-5-Seat Belts.
67-6-Theory of Traffic Flow Supplement
67-7-Rubber in Bituminous Mixtures,
67-8-Cracks in Concrete
Soil Compaction Study:
Vol. I
Vol. II
A Comparison of Clay Contents Determin by IIydrometer and Pipette Methoc September 27, 1965.
Instrumentation Report for Chadd Cre Culvert, March 1967. (Calif.).
Interim Report on the Laboratory Consi erations for the Use of Synthetic Aggrege for Hot-Mix Asphalt Pavements.
Beneficiation of Aggregates (1966). (Mont. Aggregate Absorption Factors as an Indical of the Freeze-Thaw Durability of Str tural Lightweight Concrete, Septem 1966. (Tex.)

Peel Strength the Behavior of Vario Asphalt-Stone Adhesive Joints, June 1966.

Clay Mineralogy and Chemistry of Select Washington County, Arkansas Soils a Effects on Their Engineering Propertie Technical Report No. 4, April 1967.
Final Report on a Laboratory Analysis of Composite Pavement Consisting of P stressed and Post-Tensioned Coner Pancls Covered with Asphalt Conere January 1967.
Manpower Inventory and Training Nesi
Analysis-Report No. 2. (La.). nd Adjeent Areas (1966)

October 1969 • PUBLIC ROAB

IMPROVEMENT STATUS OF SYSTEM MILEAGE AS OF JUNE 30, 1969

THE NATIONAL SYSTEM OF INTERSTATE AND DEFENSE HIGHWAYS
-18

$\left[\begin{array}{l}\mu \\ \vdots \\ k \\ \omega \\ \omega \\ \alpha \\ \mu \\ \vdots \\ z\end{array}\right]$
$\underbrace{\begin{array}{c}\text { Open to Traffic } \\ 28,219 \text { Miles }\end{array}}_{33,477 \text { Miles }}$

PUBLICATIONS of the Bureau of Public Roads

A list of the more important articles in Public Roads and title leets for volumes 24-34 are available upon request addressed to ureau of Public Roads, Federal Highway Administration, U.S. epartment of Transportation, Washington, D.C. 20591.
The following publications are sold by the Superintendent of ocuments, Government Printing Office, Washington, D.C. 20402. rders should be sent direct to the Superintendent of Documents. repayment is required.
ceidents on Main Rural Highways-Related to Speed, Driver, and Vehicle (1964). 35 cents.
ggregate Gradation for Highways: Simplification, Standardization, and Uniform Application, and A New Graphical Evaluation Chart (1962). 25 cents.
merica's Lifelines-Federal Aid for Highways (1966). 20 cents. apacity Analysis Techniques for Design of Signalized Intersections (Reprint of August and October 1967 issues of PUBLIC ROADS, a Journal of Highway Research). 45 cents.
onstruction Safety Requirements, Federal Highway Projects (1967). 50 cents.
orrugated Metal Pipe Culverts (1966). 25 cents.
reating, Organizing, \& Reporting Highway Needs Studies (Highway Planning Technical Report No. 1) (1963). 15 cents. atal and Injury Accident Rates on Federal-Aid and Other Highway Systems, 1967. 45 cents.
ederal-Aid Highway Map (42 x 65 inches) (1965). $\$ 1.50$.
ederal Laws, Regulations, and Other Material Relating to Highways (1965). \$1.50.
ederal Role in Highway Safety, House Document No. 93, 86th Cong., 1st sess. (1959). 60 cents.
reeways to Urban Development, A new concept for joint development (1966). 15 cents.
nidelines for Trip Generation Analysis (1967). 65 cents.
andbook on Highway Safety Design and Operating Practices (1968). 40 cents.
ighway Beautification Program. Senate Document No. 6, 90th Cong., 1st sess. (1967). 25 cents.
ighway Condemnation Law and Litigation in the United States (1968) :

Vol. 1-A Survey and Critique. 70 cents.
Vol. 2-State by State Statistical Summary of Reported High-
way Condemnation Cases from 1946 through 1961. $\$ 1.75$.
ighway Cost Allocation Study: Supplementary Report, House Document No. 124, 89th Cong., 1st sess. (1965). \$1.00.
ighway Finance 1921-62 (a statistical review by the Office of Planning, Highway Statistics Division) (1964). 15 cents. ighway Planning Map Manual (1963). \$1.00.
ighuvay Research and Development Studies. Using Federal-Aid Research and Planning Funds (1968). $\$ 1.50$.
ighway Statistics (published annually since 1945) :
$1965, \$ 1.00$; 1966, $\$ 1.25$; 1967, \$1.75.
(Other years out of print.)
ighway Statistics, Summary to 1965 (1967). \$1.25.
ighway Transportation Criteria in Zoning Law and Police Power and Planning Controls for Arterial Streets (1960). 35 cents.
ighways and Human Values (Annual Report for Bureau of Public Roads) (1966). 75 cents.
Supplement (1966). 25 cents.
ighways to Beauty (1966). 20 cents.
ighways and Economic and Social Changes (1964). \$1.25.
ydraulic Engineering Circulars:
No. 5-Hydraulic Charts for the Selection of Highway Culverts (1965). 45 cents.

No. 10-Capacity Charts for the Hydraulic Design of Highway Culverts (1965). 65 cents.
No. 11-Use of Riprap for Bank Protection (1967). 40 cents.
No. 12-Drainage of Highway Pavements (1969). \$1.00.
Hydraulic Design Series:
No. 2-Peak Rates of Runoff From Small Watersheds (1961). 30 cents.
No. 3-Design Charts for Open-Channel Flow (1961). 70 cents.
No. 4-Design of Roadside Drainage Channels (1965). 65 cents.
Identification of Rock Types (revised edition, 1960). 20 cents.
Request from Bureau of Public Roads. Appendix, 70 cents.
The 1965 Interstate System Cost Estimate, House Document No.
42, 89th Cong., 1st sess. (1965). 20 cents.
Interstate System Route Log and Finder List (1963). 10 cents.
Labor Compliance Manual for Direct Federal and Federal-Aid Construction, 2 d ed. (1965). \$1.75.
Amendment No. 1 to above (1966). $\$ 1.00$.
Landslide Investigations (1961). 30 cents.
Manual for Highway Severance Damage Studies (1961). \$1.00.
Manual on Uniform Traffic Control Devices for Streets and Highways (1961). \$2.00.
Part V only of above-Traffic Controls for Highway Construction and Maintenance Operations (1961). 25 cents.
Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems, House Document No. 354, 88 th Cong. $2 d$ sess. (1964). 45 cents.
Modal Split-Documentation of Nine Methods for Estimating Transit Usage (1966). 70 cents.
National Driver Register. A State Driver Records Exchange Service (1967). 25 cents.
Overtaking and Passing on Two-Lane Rural Highways-a Literature Review (1967). 20 cents.
Presplitting, A Controlled Blasting Technique for Rock Cuts (1966). 30 cents.

Proposed Program for Scenic Roads \& Parkways (prepared for the President's Council on Recreation and Natural Beauty), 1966. \$2.75.

Reinforced Concrete Bridge Members-Ultimate Design (1966). 35 cents.
Reinforced Concrete Pipe Culverts-Criteria for Structural Design and Installation (1963). 30 cents.
Road-User and Property Taxes on Selected Motor Vehicles (1968). 45 cents.

Role of Economic Studies in Urban Transportation Planning (1965). 45 cents.

The Role of Third Structure Taxes in the Highway User Tax Family (1968). \$2.25.
Standard Alphabets for Highway Signs (1966). 30 cents.
Standard Land Use Coding Manual (1965). 50 cents.
Standard Plans for Highway Bridges:
Vol. I-Concrete Superstructures (1968). \$1.25.
Vol. II-Structural Steel Superstructures (1968). \$1.00.
Vol. IV-Typical Continuous Bridges (1969). $\$ 1.50$.
Vol. V-Typical Pedestrian Bridges (1962). \$1.75.
Standard Traffic Control Signs Chart (as defined in the Manual on Uniform Traffic Control Devices for Streets and Highways) $22 \times 34,20$ cents- 100 for $\$ 15.00 .11 \times 17,10$ cents -100 for $\$ 5.00$.
Study of Airspace Utilization (1968). 75 cents.
Traffic Safety Services, Directory of National Organizations (1963). 15 cents.

Typical Plans for Retaining Walls (1967). 45 cents
Ultrasonic Testing Inspection for Butt Welds in Highway and Railway Bridges. 40 cents.

United States
Government Printing Office
DIVISION OF PUBLIC DOCUMENTS
WASHINGTON, D.C. 20402

OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please CHECK HERE \square; tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.

[^0]: ${ }^{1}$ Italic numbers in parentheses identify the references listed on page 224.

[^1]: Includes the one vehicle primarily responsible for each accident, as indicated by police investigation reports
 ${ }_{2}$ Estimates (1967) by Public Roads Office of Planning

[^2]: ${ }^{2}$ Responsibility does not necessarily imply violations by the drivers involved.

[^3]: 1 This table is the converse of table 5.
 ${ }^{2}$ Includes the one vehicle primarily responsible for each accident, as indicated by police
 investigation reports.
 ${ }^{2}$ Types of accidents that occurred less frequently (see table 1) not shown separately.

[^4]: 4ncludes eight small (less than 10 passenger) buses, seven large buses, one school bus, eight campers.
 ${ }_{5}$ Includes a few highway maintenance vehicles.

[^5]: 4 Primary responsibility for drivers was determined the procedure outlined under Vehicles. Undoubtedly, some pedestrian fatalities, victims rather than drivers primarily responsible.

[^6]: ${ }^{1}$ The work of several members of the Public Roads Office if Research and Development, especially John Yasnowsky and George Broderick, was used in this discussion.

[^7]: ${ }^{2}$ Italic numbers in parentheses identify the references listed on p. 229.

[^8]: Italic numbers in parentheses identify the references ted on p. 237.

[^9]: ${ }^{1}$ Calculated from results of tests on two groups of three samples each.
 2 Statistical significance at 0.05 confidence level

[^10]:
 2 Significant.

